
Type Systems
for Concurrent Programs

Naoki Kobayashi
Tokyo Institute of Technology

Type Systems for Programming Languages

♦ Guarantee partial correctness of programs

− fun fact (n) =

if n=0 then 1 else n × fact(n-1);

val fact = fn: int → int

Given an integer as an input, fact will return
an integer as an output.

Type Systems for Programming Languages

♦ Guarantee partial correctness of programs

− fun fact (n) =

if n=0 then 1 else n × fact(n-1);

val fact = fn: int → int

Help early finding of bugs

− fun g(x) = fact(x+1.1);

TYPE ERROR: fact requires an argument of
type int, but x+1.1 has type real.

Advanced Type Systems

♦ (almost) automatic analysis of:

– Memory usage behavior (automatic insertion of
“free” and “malloc”)

– Exception (whether a raised exception is
properly handled)

– Resource usage (e.g. a file that has been opened
is eventually closed)

♦ Type systems for low-level languages

♦ Type systems for concurrent languages

Type Systems for Concurrent Programs?

Traditional type systems (e.g. CML):

fun f(n:int) =
let val ch = channel()
in recv(ch)+n end

val f = fn: int →int

creates a
new channel

waits to receive
a value from ch

Type Systems for Concurrent Programs?

Expected Scenarios

− fun f(n:int) =
let val ch = channel()
in recv(ch)+n end

Warning: there is no sender on channel ch

− fun g(l: Lock) =
(lock(l);
if n=0 then 1 else (unlock(l); 2))

Warning: Lock l is not released in then-clause

Advanced Type Systems for
Concurrent Programs

♦ I/O mode ([Pierce&Sangiorgi 93])

– Channels are used for correct I/O modes.

♦ Linearity ([Kobayashi, Pierce & Turner 96])

– Certain channels are used once for input and ouput

♦ Race-freedom ([Abad,Flanagan&Fruend 99, 2000] etc.)

♦ Deadlock/Livelock-freedom ([Yoshida 96; Kobayashi
et al.97,98,2000; Puntigam 98] etc.)

– Certain communications succeed eventually.

Type Systems for Concurrent Programs?

Expected Scenarios

− fun f(n:int) =
let val ch = channel()
in recv(ch)+n end

Warning: there is no sender on channel ch

− fun g(l: Lock) =
(lock(l);
if n=0 then 1 else (unlock(l); 2))

Warning: Lock l is not released in then-clause

Outline

♦ Target Language

– Syntax

– Programming Examples

– Expected Properties of Programs

♦ Type System with Channel Usage

♦ More Advanced Type Systems

♦ Future Directions

Target Language: π-calculus[Milner et al.]

♦ Consists of basic concurrency
primitives

c![1, r] c?[x, y].y![x]|new r in

Message
send

Message
reception

parallel
composition

Channel
creation

→ r![1]

Target Language: π-calculus[Milner et al.]

♦ Consists of basic concurrency
primitives

♦ Expressive enough to model various
features of modern programming
languages
– (Higher-order) Functions
– Concurrent objects
– Synchronization mechanisms (locks, etc.)

c![1, r] c?[x, y].y![x]|new r in

Target Language: π-calculus[Milner et al.]

P, Q (Processes) ::=

0 (inaction)
new x in P (channel creation)

x ![v1, ..., vn] (output)

x?[y1, ..., yn]. P (input)
P|Q (parallel execution)
if b then P else Q (conditional)
∗ P (replication)

x![v1,...,vn] | x?[y1,...,yn].Q → [v1/y1,...,vn/yn]Q
(c.f. (λx.M)N → [N/x]M)

Example: Function Server
Server： ∗ succ?[n, r].r![n+1]
Client： new r in (succ![1,r] | r? [x]...)

∗ succ?[n, r].r![n+1]|succ![1,rep] | rep?[m].print![m]

→∗ succ?[n, r].r![n+1] | rep![2] | rep?[m].print![m]

→∗ succ?[n, r].r![n+1] | print![2]

server client

Example: Lock
♦ Unlocked state = presence of a value

Locked state = lack of a value

lock creation: new lock in (lock![] | …)
lock acquisition: lock?[]....
lock release: lock![]

lock![] | lock?[].〈CS1〉 .lock![] | lock?[].〈CS2〉 .lock![]
→ lock?[].〈CS1〉 .lock![] | 〈CS2〉 .lock![]
→ lock?[].〈CS1〉 .lock![] | lock![]
→〈CS1〉 .lock![]
→lock![]

Desired Properties
♦ A server is always listening to clients’

requests.

♦ A server will eventually send a reply
for each request.
∗ ping?[r].if b then r![1] else r![2]
∗ ping?[r].if b then 0 else r![1]

♦ A process can eventually acquire a lock.

♦ An acquired lock will be eventually
released.

Outline

♦ Target Language
♦ Type System with Channel Usage

– Types
– Type-checking
– Applications to programming

languages

♦ More Advanced Type Systems
♦ Future Directions

Type System with Channel Usage
♦ Checks how (input or output) and in which

order channels are used.
– A reply channel is used once for output:

∗ ping?[r].(..... r![1])
– A lock channel is used for output after it is used

for input: lock?[].(..... lock![])

♦ Related type systems:
– Input/Output Channel Types [Pierce & Sangiorgi 93]

– Linear Channel Types [Kobayashi,Pierce & Turner 96]

– Type systems for deadlock/Livelock-freedom
[Kobayashi et al]

– Types as abstract processes [Igarashi&Kobayashi]
[Rehof et al]

Channel Types

τ chan the type of a channel used for
sending/receiving a value of type τ

∗ ping?[r: int chan].r![“abc”]

∗ ping?[r: int chan].r![1]

∗ ping?[r: int chan].if b then 0 else r![1]

Channel Types with Usage

τ chan(U) the type of a channel used for
sending/receiving a value of type τ
according to usage U

∗ ping?[r: int chan(!)].r![“abc”]

∗ ping?[r: int chan(!)].r![1]

∗ ping?[r: int chan(!)].if b then 0 else r![1]

Should be used
once for output

Channel Usage
U ::= 0 not used

?.U used for input, and then as U
!.U used for output, and then as U
U1 | U2 used as U1 and U2 in parallel

U1 & U2 used as U1 or U2

µα.U recursion

∗ U used as U arbitrarily many times
(abbreviates µα.((U | α) & 0)

Channel Usage: Example
♦ Server-client connection:

µα.(?. α) | ∗!

♦ Reply channel:
! | ?

♦ Lock channel:
! | ∗?.!

Client can send
requests arbitrarily

many times

Server must be always
listening to requests

Lock is released
first

Lock should be released
each time it is acquired

Example: Lock

newLock?[lock: unit chan(∗ ?.!)].lock?[]. 〈CS〉.lock![]

newLock?[lock: unit chan(∗ ?.!)].
lock?[]. 〈CS〉.if b then 0 else lock![]

newLock?[lock: unit chan(∗ ?.!)].
lock?[]. 〈CS〉.(lock![] | lock![])

Should be used
as a lock channel

Outline

♦ Target Language
♦ Type System with Channel Usage

– Types
– Type-checking
– Applications to programming

langauges

♦ More Advanced Type Systems
♦ Conclusion

Type Judgment

x1: τ1, ..., xn: τn |− P
P is a well-typed process under the

assumption that each xi has type τi
Example:

x: int chan(!) |− x![1]

x: int chan(!), b:bool |− if b then x![1] else 0
ping: (int chan(!)) chan(?) |−ping?[r].r![1]

Typing Rules

Γ, y: τ, x:(τ chan(U)) |− P
──────────────

Γ, x :(τ chan(?.U)) |− x? [y].P

Γ |− P ∆ |− Q
──────────────

Γ | ∆ |− P | Q

Example of Type Derivation

|− r![1]
────────────────

|− ping?[r]. r![1]
────────────────

|− ∗ ping?[r]. r![1]

r : int chan(!)

ping : (int chan(!)) chan(?))

ping : (int chan(!)) chan(ω?))

Example of Type Derivation

|− r![1] |− 0
────────────────

|− if b then r![1] else 0
────────────────

|− ping?[r]. if b then r![1] else 0

r : int chan(!) r : int chan(0)

r : int chan(!&0)

ping : (int chan(!&0)) chan(?))

Outline

♦ Target Language
♦ Type System with Channel Usage

– Types
– Type-checking
– Applications to programming

languages

♦ More Advanced Type Systems
♦ Future Directions

Applications
- type ‘a rep_chan = ‘a chan(!);

type constructor rep_chan defined

- proc ping[r: int rep_chan] = r![1];

Process ping : int rep_chan->pr defined

- proc ping2[r: int rep_chan] =
if b then 0 else r![1] ;

Type error: r must have type int rep_chan,

but it has type int chan(0&!) in:

if b then 0 else r![1]

Applications
- type Lock = unit chan(∗ ?.!);

type constructor Lock defined

- proc cr[lock:Lock] = lock?[].doCR![].lock![];

Process cr: Lock -> pr defined

- proc cr2[lock:Lock] =
lock?[].doCR![].(lock![] | lock![]);

Type error: lock must have type Lock,

but it has type unit chan(?.(!|!)) in:

lock?[].doCR![].(lock![] | lock![]);

Outline

♦ Target Language
♦ Type System with Channel Usage
♦ More Advanced Type Systems

– Deadlock-freedom

– Race analysis

♦ Future Directions

More Advanced Type Systems

♦ Type systems for deadlock/livelock-
freedom [Kobayashi et al. 1997-2000]

– A server will eventually send a reply.

∗ ping?[r: int chan(!)].
new x, y in (x?[].y![] | y?[].(x![] | r![])).

− A process can eventually acquire a lock,
and will release it afterwards.

♦ Type systems for race analysis
[Abadi, Flanagan, Freund 1999,2000]

Outline

♦ Target Language
♦ Type System with Channel Usage
♦ More Advanced Type Systems

– Deadlock-freedom

– Race analysis

♦ Future Directions

Combination with Model Checking

♦ Type systems
– Work for very large programs with infinite

states

– Properties checked are limited

♦ Model checking
– Various properties can be checked

– Work for finite state systems

– Proper abstractions are necessary to
deal with large or infinite state systems

Combination with Model Checking
[Igarashi&Kobayashi 2001]

[Chaki, Rajamani,&Rehof 2002]

User Program
(Concrete Process)

Process Type
(Abstract Process)

Type check/inference

Model checking

?
P |= ϕ

?
Γ |= ϕ’

Combination with Theorem Provers

ML → Coq, ...

↓

Typed π →

↓

?

Fully automated,
but less general

Less automated,
but more general

Applications to Other Problems

♦ Analysis of Security Protocols

– Authenticity by Typing [Gordon&Jeffrey 2001]

♦ Resource Usage Analysis [Igarashi&Kobayashi
2002]

– An opened file should be eventually closed,
and should not be accessed afterwards.

File(∗ (read&write); close)

– An empty stack should not be poped.

Stack(∗ (push;(pop&0)))

Conclusion
♦ Type systems for concurrent programs are

mature enough to be applied to concurrent
languages (e.g. Race analyzer for Java
[Flanagan and Freund PLDI2000])

♦ Future directions

– Combination with other methods for
program verification/analysis

– Technology shift to other problems
(security protocols, resource usage)

