Type Systems
for Concurrent Programs

Naoki Kobayashi

Tokyo Institute of Technology

Type Systems for Programming Languages

¢ Guarantee partial correctness of programs
— fun fact (n) =
If Nn=0 then 1 else n x fact(n-1);
val fact = fn: Int - Int

Given an integer as an input, fact will return
an integer as an output.

Type Systems for Programming Languages

¢ Guarantee partial correctness of programs
— fun fact (n) =
If Nn=0 then 1 else n x fact(n-1);
val fact = fn: Int - Int
&®Help early finding of bugs
— fun g(x) = fact(x+1.1);

TYPE ERROR: fact requires an argument of
type Int, but x+1.1 has type real.

Advanced Type Systems

¢ (almost) automatic analysis of:

— Memory usage behavior (automatic insertion of
“free”” and “malloc™)

— Exception (whether a raised exception is
properly handled)

— Resource usage (e.g. a file that has been opened
IS eventually closed)

¢ Type systems for low-level languages

¢ Type systems for concurrent languages

Type Systems for Concurrent Programs?

¢ Traditional type systems (e.g. CML):

_ creates a
fun f(n:int) = new channel
let val ch =<anne|

m@cv(c)n end
walts to receive
a value from ch

val f = fn: Iint - int

Type Systems for Concurrent Programs?

¢ Expected Scenarios
- fun f(n:int) =
let val ch = channel()
IN recv(ch)+n end
Warning: there is no sender on channel ch
— fun g(l: Lock) =
(lock(l);
If Nn=0 then 1 else (unlock(l); 2))

Warning.: Lock I is not released in then-clause

Advanced Type Systems for
Concurrent Programs

¢ 1/0 mode ([Pierce&Sangiorgi 93])

— Channels are used for correct I/0 modes.
¢ Linearity ([Kobayashi, Pierce & Turner 96])

— Certain channels are used once for input and ouput
¢ Race-freedom ([Abad,Flanagan&Fruend 99, 2000] etc.)

¢ Deadlock/Livelock-freedom ([Yoshida 96; Kobayashi
et al.97,98,2000; Puntigam 98] etc.)

— Certain communications succeed eventually.

Type Systems for Concurrent Programs?

®Expected Scenarios
— fun f(n:int) =
let val ch = channel()
IN recv(ch)+n end
Warning: there i1s no sender on channel ch
— fun g(l: Lock) =
(lock(l);
If Nn=0 then 1 else (unlock(l); 2))

Warning.: Lock I is not released in then-clause

Outline

¢ Target Language

— Syntax

— Programming Examples

— Expected Properties of Programs
¢ Type System with Channel Usage
¢ More Advanced Type Systems

¢ Future Directions

Target Language: 1-calculusmilner et al]
¢ Consists of basic concurrency

primitiveS parallel
composition

Channel j Message
creation reception

Target Language: 1-calculusmilner et al]

¢ Consists of basic concurrency
primitives

newrin cl[1,r] | c?[x, yl.y![x]

¢ Expressive enough to model various
features of modern programming
languages
— (Higher-order) Functions
— Concurrent objects
— Synchronization mechanisms (locks, etc.)

Target Language: 1-calculusmilner et al]
P, Q (Processes) ::=

0 (inaction)

new X in P (channel creation)
X! Vg ooy V] (output)

XLV 0 Y 1o P (input)

P]Q (parallel execution)
If bthen P else Q (conditional)

P (replication)

XUV Vo] | X2 Y0¥ Q = [VilY VYR Q
(c.f. AX.M)N = [N/X]M)

Example: Function Server
Server [&ucc?[n, r].r'[n+1]

Client new r in (succ![1,r] | r?[x]...)

succ?[n, r].r'[n+1]|succ![1,rep] | rep?[m].print! [m]

— —

'l Ny
server client

- [Bucc?[n, r].ri[n+1] | rep![2] | rep?[m].print![m]

- [Bucc?[n, r].r'[n+1] | print![2]

Example: Lock

¢ Unlocked state = presence of a value
Locked state = lack of a value

lock creation: new lock in (lock![] | ...)
lock acquisition: lock?[]....

lock release: lock![]

lock![] | lock?[].LCS1Llock![] | lock?[].
- lock?[].LCS1Llock![| | LCS2LIock!] |
- lock?[].LCS1Llock![] | lock!]]
- [CS10lock![]
—lock![]

g—

S20ock![]

Desired Properties

¢ A server Is always listening to clients’
requests.

¢ A server will eventually send a reply
for each request.

[ping?[r].if b thenﬁ[l] else r![2]
hing?[r].if b theX0 else r![1]

¢ A process can eventually acquire a lock.

¢ An acquired lock will be eventually
released.

Outline

¢ Target Language

¢ Type System with Channel Usage
— Types
— Type-checking

— Applications to programming
languages

¢ More Advanced Type Systems
¢ Future Directions

Type System with Channel Usage
¢ Checks Aow (input or output) and /n which
order channels are used.
— A reply channel is used once for output:
Cping?[r].(..... r![1])
— A lock channel is used for output after it is used
for input: lock?[].(..... lock![])
¢ Related type systems:
— Input/Output Channel Types [Pierce & Sangiorgi 93]
— Linear Channel Types [Kobayashi,Pierce & Turner 96]

— Type systems for deadlock/Livelock-freedom
[Kobayashi et al]

— Types as abstract processes [Igarashi&Kobayashi]
[Rehof et al]

Channel Types

T chan the type of a channel used for
sending/receiving a value of type T

[ping?[r: Int chan :.r![xabc”]
[ping?[r: Int chan :.r!{{]
[ping?[r: Int chan |].if b then 0 else r!\[{]

Channel Types with Usage

T chan(U) the type of a channel used for
sending/receiving a value of type 1

according to usage U
Lping?[r: iInt chan(!) |.r![* 36(:”]

Lping?[r: iInt chan(!) | .r!Y{]
1.if b then®S else r1[1]

[ping?[r: Int chan(!

Should be used
once for output

Channel Usage

U::=0 not used
?2.U used for input, and then as U
.U used for output, and then as U
U, | U, usedas U, and U, in parallel

U,& U, used as U, or U,

ua.U recursion

used as U arbitrarily many times
(abbreviates ua.((U | a) & 0)

Channel Usage: Example

¢ Server-client connection:

@a.(?@)@%

: TN

Server must be always ot can senc

: : 4 requests arbitrarily

listening to reguests :
many times

¢ Reply channel: — _

1] ?
¢ Lock channel:

: Lock should be released
|:|—OCk '? released each time it is acquired
Irst

Example: Lock

Should be used
as a lock channel

newLock?[lock: unit chan([12.!)].lock?[]. [(DSDlODé[|

newlLock?[lock: unit chan([12.!) |.
lock?[]. LCSLIif b then se lock![]

newlLock?[lock: unit chan([2.!) |].
lock?[]. LCSLI(lock![] | Iock.qq)

g—

Outline

¢ Target Language

¢ Type System with Channel Usage
— Types
— Type-checking

— Applications to programming
langauges

¢ More Advanced Type Systems
¢ Conclusion

Type Judgment

X1: Tqy ooy Xt Ty |— P
P is a well-typed process under the
assumption that each X; has type T,
Example:
v' x: int chan(!) |- x![1]
X x:int chan(!), b:bool |-if b then x![1] else O

v ping: (int chan(!)) chan(?) |-ping?[r].r'[1]

Typing Rules

[,y. T, X:(t chan(U)) [-P

F1A-P[Q

Example of Type Derivation

r - int chan(!) |-r![1]

ping - (int chan(!)) chan(w?)) |- Ching?[r]. r![1]

Example of Type Derivation

r:int chan(!)|-r![1] r:int chan(0)|-0

ping : (int chan(!&0)) chan(?))
|- ping?[r]. if bthen r![1] else O

Outline

¢ Target Language

¢ Type System with Channel Usage
— Types
— Type-checking

— Applications to programming
languages

¢ More Advanced Type Systems
¢ Future Directions

Applications

- type ‘a rep_chan = ‘a chan(!);

type constructor rep chan defined

- proc ping|[r: int rep_chan] = r![1];
Process ping : Int rep _chan->pr defined

- proc ping2|[r: int rep_chan] =
If b then O else r![1] ;

Type error: r must have type int rep chan,
but 1t has type int chan(0O&!) in:
If b then O else r![1]

Applications

- type Lock = unit chan([?.!);

type constructor Lock defined
- proc crllock:Lock] = lock?[].doCR![].lock![];
Process cr: Lock -> pr defined

- proc cr2[lock:Lock] =
lock?[].doCR![].(lock![] | lock![]);

Type error.: lock must have type Lock,
but it has type unit chan(?.(’f!)) in:
lock?[].doCR![].(lock![] [lock![]),

Outline

¢ Target Language
¢ Type System with Channel Usage
¢ More Advanced Type Systems
— Deadlock-freedom
— Race analysis
¢ Future Directions

More Advanced Type Systems

¢ Type systems for deadlock/livelock-
freedom [Kobayashi et al. 1997-2000]

— A server will eventually send a reply.
x [ping?[r: int chan(!)].
new X,y Iin (X?[[LYI[]]y?[.XIL]I rt[1))
— A process can eventually acquire a lock,
and will release It afterwards.

¢ Type systems for race analysis
[Abadi, Flanagan, Freund 1999,2000]

Outline

¢ Target Language
¢ Type System with Channel Usage
¢ More Advanced Type Systems
— Deadlock-freedom
— Race analysis
¢ Future Directions

Combination with Model Checking

¢ Type systems

— Work for very large programs with infinite
states

— Properties checked are limited

¢ Model checking
— Various properties can be checked
— Work for finite state systems

— Proper abstractions are necessary to
deal with large or infinite state systems

Combination with Model Checking

[Ilgarashi&Kobayashi 2001]
[Chaki, Rajamani,&Rehof 2002]

User Program 7
(Concrete Process) P |: (I)

@e check/infer@

| :

Process Type B ‘: (I)’
(Abstract Process)

@odel checking>

Combination with Theorem Provers

ML X Coq, ...
l '
Typed Tt - ?
Fully automated, Less automated,

but less general but more general

Applications to Other Problems

¢ Analysis of Security Protocols

— Authenticity by Typing [Gordon&Jeffrey 2001]

¢ Resource Usage Analysis [Igarashi&Kobayashi
2002]

— An opened file should be eventually closed,
and should not be accessed afterwards.

File(L{read&write); close)
— An empty stack should not be poped.
Stack(dpush;(pop&0)))

Conclusion

¢ Type systems for concurrent programs are
mature enough to be applied to concurrent
languages (e.g. Race analyzer for Java
[Flanagan and Freund PLDI2000])

¢ Future directions

— Combination with other methods for
program verification/analysis

— Technology shift to other problems
(security protocols, resource usage)

