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Abstract
We will demonstrate MoCHi, a fully-automated program verifica-
tion tool (so called a “software model checker”) for a subset of
OCaml, supporting integers, recursive data types (such as lists),
exceptions, higher-order functions and recursion. MoCHi is based
on higher-order model checking, and consists of three layers. The
top layer transforms a source program into an intermediate pro-
gram of a core language, which is a simply-typed call-by-value
higher-order functional language with recursion, booleans and in-
tegers (a la “PCF”). The transformation is carried out by encoding
exceptions and recursive data types using higher-order functions.
The middle layer further transforms the intermediate program into
a higher-order boolean functional program (a la “finitary PCF”),
by using predicate abstraction and counterexample-guided abstrac-
tion refinement (CEGAR). Finally, on the bottom layer, the higher-
order boolean functional program is verified by using a higher-
order model checker.

In the presentation, we use MoCHi to verify several sample
programs, and explain how it works internally. We will also discuss
the current limitations and ongoing/future work.

1. Introduction
MoCHi is a software model checker for a subset of OCaml, con-
structed based on higher-order model checking [1–4], predicate ab-
straction, and counter-example-guided abstraction refinement (CE-
GAR) [5]. This can be viewed as a higher-order counterpart of
previous software model checkers for imperative languages like
BLAST [6] and SLAM [7]. MoCHi takes an OCaml program as an
input, and statically checks lack of assertion failures, pattern match
errors, and uncaught exceptions. The supported language features
includes higher-order functions and recursion, base types, some re-
cursive data types (such as lists and trees), and exceptions. Certain
restrictions are imposed on recursive data types and exceptions,
which will be explained later.

In the rest of this paper, we explain the features of MoCHi from
a user’s point of view in Section 2, and the internal structure of
MoCHi in Section 3.

2. Overview of MoCHi
Given a program written in OCaml, MoCHi checks whether the
program is safe or not. The input language supports the following
features:

• base types (unit, booleans, and integers),
• tuples,
• recursion,
• higher-order functions,

• Input:

let rec mc91 x = if x > 100 then x - 10
else mc91 (mc91 (x + 11))

let main n = if n <= 101 then assert (mc91 n = 91)

• Output:

...
Abstraction Types::

mc91 : x:int[x <= 111; x <= 101] ->
x:int[x <= 101; x = 91]

...
Intersection Types::

...

Safe!

total: 0.229965 sec

Figure 1. Verification Example for Safe Program

• exceptions, and
• algebraic data types.

The following restrictions are imposed on exceptions and alge-
braic data types. As for exceptions, we do not allow those carrying
function arguments. For algebraic data types, we do not support
parametrized data types (such as datatype ’a list = ...),
and more importantly, recursive type variables cannot occur under
function constructors. Thus, µα.unit+ (int→ int) ∗ α (which
corresponds to (int→ int) list) is OK, but neither µα. α→ int
nor µα. (int→ α) is allowed.

MoCHi checks the following properties:

• The assertions in the program never fail.
• The pattern matches in the program are exhaustive.
• An uncaught exception does not occur.

MoCHi outputs “safe” with a certificate1 when the program satis-
fies all the three properties above. Otherwise, MoCHi outputs “un-
safe” with a counterexample that consists of an input of the main
function and an execution sequence that reaches an error.

Figures 1 and 2 show verification examples of McCarthy 91
function using MoCHi. Programs assert that mc91 n = 91 for all
n ≤ 101 and for all n ≤ 200, respectively. MoCHi verifies that
the first program is safe, i.e., the assertion never fails, and outputs

1 A certificate consists of abstraction types, that represent how to abstract
the program, and intersection types, that is a certificate for the safety of the
abstracted program. See papers [2, 5] for details



• Input:

let rec mc91 x = if x > 100 then x - 10
else mc91 (mc91 (x + 11))

let main n = if n <= 200 then assert (mc91 n = 91)

• Output:

...
Unsafe!

Inputs:
n = 102;

Error trace::
main ... -->

...
assert ... -->
ERROR!

total: 0.104983 sec

Figure 2. Verification Example for Unsafe Program
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Figure 3. Internals of MoCHi

a certificate. MoCHi rejects the second program, and show that the
program fails when an input of the main function is 102.

MoCHi can be tested and example programs are available at
http://www.kb.ecei.tohoku.ac.jp/~ryosuke/mochi/.

3. Internals of MoCHi
Figure 3 shows the internal structure of MoCHi.

First, an input program is translated to an equivalent higher-
order program without exception and recursive data structures, by
three transformations (Steps 1, 2, and 3). In Step 1, exceptions are
eliminated by using CPS-transformation, where exception handlers
are expressed as auxiliary continuations. We impose the restriction

that exceptions should not carry functions, to ensure that the result
of the transformation is well-typed. In Step 2, a recursive data
structure is encoded as a function that maps paths of nodes to labels.
Here, a path and a label are represented as a list of integers and an
integer respectively. Consider binary trees defined as follows.

type btree = Leaf | Node of btree * btree

A binary tree is encoded as a term of the type int list→ int. For
example, a binary tree node(leaf ,node(leaf , leaf)) is encoded
as a function {[] 7→ node, [1] 7→ leaf , [2] 7→ node, [2, 1] 7→
leaf , [2, 2] 7→ leaf} where leaf and node are defined as some
integers. Note that the restriction on recursive types mentioned in
Section 2 is necessary to make this encoding work. In Step 3, a list
is encoded as a pair of its length and a function that maps indices
to the elements of the list. For example, the list [2; 3; 5] is encoded
as the pair (3, f) where f(0) = 2, f(1) = 3, and f(2) = 5. See
[8] for more details.

The translated program with integers is verified by higher-order
model checking with predicate abstraction and CEGAR. In Step
4, the program with integers is abstracted to a higher-order boolean
program, that is a higher-order program only with boolean, by using
given predicates for abstraction. The abstracted program is verified
by a higher-order model checker (that is sound and complete) in
Step 5. If the abstracted program is safe, the original functional
program is also safe. If not, we check whether the original program
is in fact unsafe or the abstraction is too coarse in Step 6. If the
latter, we discover new predicates to refine abstraction in Step 7.
We repeat these steps until we find whether the program is safe or
not. See [5] for more details.

MoCHi uses TRecS [2, 4] as the underlying higher-order model
checker (for Step 5 in Figure 3), and uses CSIsat [9] for predicate
discovery (for Step 7). CVC3 [10] is used for unsafety check (for
Step 6) and predicate abstraction (for Step 4).

4. Conclusion
We have implemented MoCHi, a verifier for a subset of OCaml
with some base types (unit, booleans, and integers), higher-order
functions, recursions, recursive data structures, and exceptions.

Future work includes:

• Supporting a larger subset of OCaml (references, modules, etc.)
• Supporting a larger class of properties such as resource usage

safety [2].
• Making the implementation scalable for larger programs.
• Improving the usability of reports of verification results. For

example, we can actually recover dependent types from the
current output of MoCHi and show them as a certificate.
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