
Verifying Relational Properties of
Functional Programs by First-Order RefinementI

Kazuyuki Asadaa, Ryosuke Satoa, Naoki Kobayashia

aUniversity of Tokyo

Abstract

Much progress has been made recently on fully automated verification of higher-order functional programs, based
on refinement types and higher-order model checking. Most of those verification techniques are, however, based
on first-order refinement types, hence unable to verify certain properties of functions (such as the equality of two
recursive functions and the monotonicity of a function, which we call relational properties). To relax this limitation,
we introduce a restricted form of higher-order refinement types where refinement predicates can refer to functions, and
formalize a systematic program transformation to reduce type checking/inference for higher-order refinement types to
that for first-order refinement types, so that the latter can be automatically solved by using an existing software model
checker. We also prove the soundness of the transformation, and report on implementation and experiments.

1. Introduction

There has been much progress in automated verification techniques for higher-order functional programs [12, 17,
16, 9, 11, 19, 13].1 Most of those techniques abstract programs by using first-order predicates on base values (such
as integers), due to the limitation of underlying theorem provers and predicate discovery procedures. For example,
consider the program:

let rec sum n = if n<0 then 0 else n+sum(n-1).

Using the existing techniques [12, 17, 16, 9], one can verify that sum has the first-order refinement type: (n :
int) → {m : int |m ≥ n}, which means that sum n returns a value no less than n. Here, {m : int | P (m)} is the
(refinement) type of integers m that satisfy P (m).

Due to the restriction to the first-order predicates, however, it is difficult to reason about what we call relational
properties, such as the relationship between two functions, and the relationship between two invocations of a function.
For example, consider another version of the sum function:

let rec sumacc n m = if n<0 then m else sumacc (n-1) (m+n)
and sum2 n = sumacc n 0

Suppose we wish to check that sum2(n) equals sum(n) for every integer n. With general refinement types [6], that
would amount to checking that sumacc and sum2 have the following types:2

sumacc : (n : int)→ (m : int)→{r : int | r = m+ sum(n)}
sum2 : (n : int)→{r : int | r = sum(n)}

IThis article is a revised and extended version of the paper that appeared in Proceedings of PEPM 2015 under the title “Verifying Relational
Properties of Functional Programs by First-Order Refinement”. We have added detailed definitions, proofs, and explanations.

Email addresses: asada@kb.is.s.u-tokyo.ac.jp (Kazuyuki Asada), ryosuke@kb.is.s.u-tokyo.ac.jp (Ryosuke Sato),
koba@kb.is.s.u-tokyo.ac.jp (Naoki Kobayashi)

1In the present paper, by automated verification, we mean (almost) fully automated one, where a tool can automatically verify a given program
satisfies a given specification (expressed either in the form of assertions or refinement type declarations), without requiring invariant annotations
(such as pre/post conditions for each function). It should be contrasted with refinement type checkers [20, 2] where a user must declare refinement
types for all recursive functions including auxiliary functions. Some of the automated verification techniques above require a hint [19], however.

2As defined later, a formula t1 = t2 in a refinement type means that if both t1 and t2 evaluate to (base) values, then the values are equivalent.

Preprint submitted to Elsevier June 27, 2016

The type of sum2 means that sum2 takes an integer as an argument n and returns an integer r that equals the value of
sum(n). With the first-order refinement types, however, sum cannot be used in predicates, so the only way to prove
that sum2(n) equals sum(n) would be to verify precise input/output behaviors of the functions:

sum,sum2 : (n : int)→{r : int | (n ≥ 0 ∧ r = n(n+ 1)/2) ∨ (n < 0 ∧ r = 0)}.

Since this involves non-linear and disjunctive predicates, automated verification (which involves automated synthesis
of the predicates above) is difficult. In fact, most of the recent automated verification tools do not deal with non-linear
arithmetic.

Actually, with the first-order refinement types, there is a difficulty even with the “trivial” property that sum satisfies
sum x = x+ sum (x− 1) for every x ≥ 0. This is almost the definition of the sum function, and it can be expressed
and verified using the general refinement type:

sum : {f : int→ int | ∀x. x ≥ 0⇒ f(x) = x+ f(x− 1)}.

Yet, with the restriction to first-order refinement types, one would need to infer the precise input/output behavior of
sum (i.e., that sum(x) returns x(x+ 1)/2).3

We face even more difficulties when dealing with higher-order functions. Consider the following program.

let nil i = None in
let tl xs = fun i-> xs(i+1) in
let cons x xs = fun i -> if i=0 then Some(x) else xs(i-1) in
let rec append xs ys =

match xs(0) with None -> ys
| Some(x) -> let xs’ = tl xs in cons x (append xs’ ys)

Here, a list is encoded as a function that maps each index to the corresponding element (or None if the index is out
of bounds) [13], and the append function is defined. Suppose that we wish to verify that append xs nil = xs.
With general refinement types, the property would be expressed by:

append : (x : int→ int option)→{y : int→ int option | y(0) = None}→ {r : int→ int option | r = x}

(where r = xmeans the extensional equality of functions r and x) but one cannot directly express and verify the same
property using first-order refinement types.

To overcome the problems above, we allow4 programmers to specify (a restricted form of) general refinement
types in source programs. For example, they can declare

sum2 : (n : int)→{r : int | r = sum(n)}
append : (x : int→ int option)→ ({y : int→ int option | y(0) = None}→

{r : int→ int option | ∀i.r(i) = x(i)}.

To take advantage of the recent advance of verification techniques based on first-order refinement types, however,
we employ automated program transformation, so that the resulting program can be verified by using only first-order
refinement types. The key idea of the transformation is to apply a kind of tupling transformation [3] to capture the
relationship between two (or more) function calls at the level of first-order refinement. For example, for the sum
program above, one can apply the standard tupling transformation (to combine two functions sum and sumacc into
one) and obtain:

let rec sum_sumacc (n, m) =
if n<0 then (0,m)

else let (r1,r2)=sum_sumacc (n-1, m+n) in (r1+n, r2)

3Another way would be to use uninterpreted function symbols, but for that purpose, one would first need to check that sum is total.
4But programmers are not obliged to specify types for all functions. In fact, for the example of sum2, no declaration is required for the function

sum.

2

Checking the equivalence of sum and sum2 then amounts to checking that sum sumacc has the following first-order
refinement type:

((n,m) : int× int)→{(r1, r2) : int× int | r2 = r1 +m}.

The transformation for append is more involved: because the return type of the append function refers to the first
argument, the append function is modified so that it returns a pair consisting of the first argument and the result:

let append2 xs ys = (xs, append xs ys).

Then, append2 is further transformed to append3 below, obtained by replacing (xs, append xs ys) with
its tupled version.

let append3 xs ys (i,j) = (xs(i), append xs ys j).

The required property append xs nil = xs is then verified by checking that append3 has the following first-
order refinement type τappend3:

(x : int→ int option)→
(y : ((x : int)→{r : int option | x = 0⇒ r = None}))→
((i, j) : int× int)→{(r1, r2) : int× int | i = j ⇒ r1 = r2}.

The transformation sketched above has allowed us to express the external behavior of the append function by using
first-order refinement types. With the transformation alone, however, the first-order refinement type checking does not
succeed: For reasoning about the internal behavior of append, we need information about the relation between the
two function calls xs(i) and append xs ys j, which cannot be expressed by first order refinement types. As
already mentioned, with the restriction to first-order refinement types, the relationship between the return values of
the two calls can only be obtained by relating the input/output relations of functions xs and append. To avoid that
limitation, we further transform the program, by inlining append and tupling the two calls of the body of append3:

let append4 xs ys (i,j) =
match xs(0) with
| None -> nil2 (i,j)
| Some(x) ->

let xs’ = tl xs in
let xszs’ = append4 xs’ ys in
let xszs’’ = cons2 x x xszs’ in
xszs’’ (i,j)

Here, nil2 and cons2 x x xszs’ are respectively tupled versions of (nil,nil) and (cons x xs’, cons
x zs’), where xszs’ is a tupled one of xs’ and zs’.

At last, it can automatically be proved that append4 has type τappend3. (To clarify the ideas, we have over-
simplified the transformation above. The actual output of the automatic transformation formalized later is more
complicated.)

We formalize the idea sketched above and prove the soundness of the transformation. We also report on a prototype
implementation of the approach as an extension to the software model checker MoCHi [9, 13] for a subset of OCaml.
The implementation takes a program and its specification (in the form of refinement types) as input, and verifies
them automatically (without invariant annotations for auxiliary functions) by applying the above transformations and
calling MoCHi as a backend.

The rest of the paper is organized as follows. Section 2 introduces the source language. Section 3 presents
the basic transformation for reducing the (restricted form of) general refinement type checking problem to the first-
order refinement type checking problem. Roughly, this transformation corresponds to the one from append to
append3 above. As mentioned above, the basic transformation alone is not sufficient for automated verification via
first-order refinement types; we therefore improve the transformation in Section 4 (which roughly corresponds to the
transformation from append3 to append4 above). Section 5 reports on experiments and Section 6 discusses related
work. We conclude the paper in Section 7.

3

V (value) ::= n | fix(f, λx. t) | (V1, . . . , Vn)
A (answer) ::= V | fail
E (eval. ctx.) ::= [] | op(Ṽ , E, t̃) | if E then t1 else t2 | E t | V E | (Ṽ , E, t̃) | priE

E[op(n1, . . . , nk)] −→ E[[[op]](n1, . . . , nk)]

E[fail] −→ fail

E[if true then t1 else t2] −→ E[t1]

E[if V then t1 else t2] −→ E[t2](V 6= true)

E[fix(f, λx. t)V] −→ E[t[f 7→fix(f, λx. t)][x 7→V]]

E[pri(V1, . . . , Vn)] −→ E[Vi]

Figure 1: Operational semantics of the source language

2. Source Language

This section formalizes the source language and the verification problem.

2.1. Source Language
The source language, used as the target of our verification method, is a simply-typed, call-by-value, higher-order

functional language with recursion. The syntax of terms is given by:

t (terms) ::= x | n | op(t1, . . . , tn) | if t then t1 else t2 | fix(f, λx. t) | t1 t2 | (t1, . . . , tn) | prit | fail

We use meta-variables x, y, z, . . . , f, g, h, . . . , and ν for variables. We have only integers as base values, which are
denoted by the meta-variable n. We express Booleans by integers, and write true for 1, and false for 0. The term
op(t̃) (where t̃ denotes a sequence of expressions) applies the primitive operation op on integers to t̃. We assume that
we have the equality operator =, the conjunction &, and the implication => as primitive operations. We sometimes
write = also as == to distinguish it from the mathematical equality. The term fix(f, λx. t) denotes the recursive
function defined by f = λx.t. When f does not occur in t, we write λx. t for fix(f, λx. t). The term t1t2 applies
the function t1 to t2. We write let x = t in t′ for (λx.t′)t, and write also t; t′ for it when x does not occur in t′.
The terms (t1, . . . , tn) and prit respectively construct and destruct tuples. The special term fail aborts the execution.
It is typically used to express assertions; assert(t), which asserts that t should evaluate to true, is expressed by
if t then true else fail. We call a closed term (i.e., a term containing no free varibales) a program. We often write
t̃ for a sequence t1, . . . , tn.

For the sake of simplicity, we assume that tuple constructors occur only in the outermost position or in the argu-
ment positions of function calls in source programs. We also assume that all the programs are simply-typed below
(where fail can have every type).

The small-step semantics is shown in Figure 1. In the figure, [[op]] is the integer operation denoted by op. We write
−→∗ for the reflexive and transitive closure of −→, and t −→k t′ if t is reduced to t′ in k steps. We write t ↑ if there
is an infinite reduction sequence t −→ t1 −→ t2 −→ · · ·. By the assumption that a program is simply-typed, for
every program t, either t evaluates to an answer (i.e., t −→∗ V or t −→∗ fail) or diverges (i.e., t ↑). The semantics
of the primitive operations =, &, and => are defined as follows.

[[=]](n1, n2) =

{
true (if n1 = n2)
false (otherwise)

[[&]](b1, b2) =

{
b2 (if b1 = true)
false (otherwise)

[[=>]](b1, b2) =

{
b2 (if b1 = true)
true (otherwise)

4

We express the specification of a program by using refinement types. The syntax of refinement types is given by:

τ (types) ::= ρ | {ν :
∏n
i=1 (xi: ρi) | P}

ρ (non-tuple types) ::= {ν : int | P} | {ν : (x : τ1)→ τ2 | P}
P (predicates) ::= t | P ∧ P | ∀x.P

where we have used a notational convention
∏n
i=1 (xi: ρi) to denote (x1: ρ1) × · · · × (xn−1: ρn−1) × ρn (thus, the

variable xn actually does not occur). The type (x: ρ1) × ρ2 is a dependent sum type, where x may occur in ρ2, and
(x: τ1)→τ2 is a dependent product type, where xmay occur in τ2. We use a metavariable σ to denote int, (x: τ1)→τ2,
or
∏n
i=1 (xi: ρi). Intuitively, a refinement type {ν : σ | P} describes a value ν of type σ that satisfies the refinement

predicate P . For example, {ν : int | ν > 0} describes a positive integer. The type {f : int → int | ∀x, y. x ≤
y => f(x) ≤ f(y)} describes a monotonic function on integers.

A refinement predicate P can be constructed from expressions and top-level logical connectives ∀x and ∧, where
x ranges over integers. The other logical connectives can be expressed by using expression-level Boolean primitives,
but their semantics is subtle due to the presence of effects (non-termination and abort) of expressions, as discussed
later in Section 2.2.

We often write just σ for {x : σ | true}; τ1 → τ2 for (x : τ1)→ τ2, and ρ1 × ρ2 for (x: ρ1) × ρ2 if x does not
occur in τ2 and ρ2 respectively. We write τm for τ × · · · × τ (the m-th power); {(νi)i≤n :

∏n
i=1 (xi: ρi) | P} for

{ν :
∏n
i=1 (xi: ρi) | P [ν1 7→pr1ν, . . . , νn 7→prnν]}; and ∀x̃.P for ∀x1, . . . , xn.P .

For a type τ we define the simple type ST(τ) of τ as follows:

ST({ν : σ | P}) = ST(σ)

ST(int) = int

ST((x : τ1)→ τ2) = ST(τ1)→ ST(τ2)

ST(
∏n
i=1 (xi: ρi)) =

∏n
i=1 ST(ρi)

We define the order of τ by:

order({ν : σ | P}) = order(σ)

order(int) = 0

order((x : τ1)→ τ2) = max(order(τ1) + 1, order(τ2))

order(
∏n
i=1 (xi: ρi)) = max

1≤i≤n
{order(ρi)} .

The syntax of types is subject to the usual scope rule; in (x: ρ1) × ρ2 and (x: τ1)→ τ2, the scope of x is ρ2 and
τ2 respectively. Furthermore, we require that every refinement predicate is well-typed and have type int. Figure 2
shows the definition of this general well-formedness, which is applied in Section 2.2, and Appendix B. Here, we write
ST(x1 : τ1, . . . , xn : τn) for x1 : ST(τ1), . . . , xn : ST(τn), and Γ `ST t : κ means that t has simple type κ under
simple type environment Γ. The judgment Γ `ST t : κ is defined in Appendix A. To enable the reduction to first-order
refinement type checking, we shall further restrict the syntax of types later in Section 2.3.

2.2. Semantics of Refinement Types

The semantics of types is defined in Figure 3, using logical relations. The connectives ∀ and∧ have genuine logical
meaning, and especially they are commutative, so we often use the prenex normal form. Notice that the semantics of
t1 ∧ t2 and t1 & t2 are different. For example, let Ω be a divergent term. Then |= 1 : {x : int | Ω ∧ x = 0} does NOT
hold, but |= 1 : {x : int | Ω & x = 0} DOES hold, since Ω & x = 0 diverges.

The goal of our verification is to check whether |= t : τ holds, given a program t and a type τ . Since the verification
problem is undecidable,5 we aim to develop a sound but incomplete method below. As explained in Section 1, our

5For a program t, we can reduce the halting problem of t to the verification problem of |= t; fail : int. Therefore, if we could solve the
verification problem, then we could solve the halting problem.

5

ST(Γ) `ST t : int

Γ `GWF t
(GWF-PREDTERM)

Γ `GWF P1 Γ `GWF P2

Γ `GWF P1 ∧ P2

(GWF-PREDAND)

Γ, y1 : int, . . . , yn : int `GWF P
Γ `GWF ∀y1, . . . , yn. P

(GWF-PREDFORALL)

Γ `GWF σ Γ, x : σ `GWF P
Γ `GWF {x : σ | P}

(GWF-REFINE)

Γ `GWF int
(GWF-INT)

Γ `GWF τ1 Γ, x : τ1 `GWF τ2
Γ `GWF (x : τ1)→ τ2

(GWF-FUN)

Γ `GWF τ1 Γ, x : τ1 `GWF τ2
Γ `GWF (x : τ1)× τ2

(GWF-PAIR)

`GWF ∅
(GWF-ENIL)

`GWF Γ Γ `GWF τ (x :) /∈ Γ

`GWF Γ, x : τ
(GWF-ECONS)

Γ ::= ∅ | Γ, x : τ

Figure 2: General well-formedness of types

6

(Predicate) |=p ⊆ {P : closed}

• |=p ∀x. P
def⇐⇒ |=p P [x 7→m] for any integer m

• |=p P1 ∧ P2
def⇐⇒ |=p P1 and |=p P1

• |=p t
def⇐⇒ A = true for any A s.t. t −→∗ A

(Value) |=v ⊆ {V : closed} × {τ : closed}

• |=v V : {ν : σ | P} def⇐⇒ |=v V : σ and |=p P [ν 7→V]

• |=v V : int
def⇐⇒ V = m for some integer m

• |=v V : (x1 : τ1)→ τ2
def⇐⇒ for any V1, |=v V1 : τ1 implies |= V V1 : τ2[x1 7→V1]

• |=v (V1, . . . , Vn) :
∏n
i=1 (xi : ρi)

def⇐⇒ |=v Vi : ρi[x1 7→V1, . . . , xi−1 7→Vi−1] for any i ≤ n

(Term) |= ⊆ {t : closed} × {τ : closed}

• |= t : τ
def⇐⇒ |=v A : τ for any A s.t. t −→∗ A

Figure 3: Semantics of types

approach is to use program transformation to reduce the (semantic) type checking problem |= t : τ to the first-order
refinement type checking problem |= t′ : τ ′ where τ ′ does not contain any function variables in refinement predicates,
and to check |= t′ : τ ′ using an automated verification tool such as MoCHi [9, 13, 18], which combines higher-order
model checking [8] and predicate abstraction.

We assume that the input program t is closed. If one wishes to verify an open term, e.g., a program t which uses
a library function f , one can simply use the lambda abstraction λf. t as an input program and use (f : τ1)→ τ as an
input specification where τ is the original specification for t and τ1 is a given refinement type of f .

2.3. Restriction on Refinement Types

To enable the reduction of the refinement type checking problem |= t : τ to the first-order one |= t′ : τ ′, we have
to impose some restrictions on the type τ . The most important restriction is that only first-order function variables
(i.e., functions whose simple types are of the form int × · · · × int → int × · · · × int) may be used in refinement
predicates. The other restrictions are rather technical. We describe below the details of the restrictions, but they may
be skipped for the first reading.

1. We assume that every closed type τ satisfies the well-formedness condition ∅ `WF τ defined in Figure 4. In the
figure, ElimHOn(Γ) filters out all the bindings of types whose depth are greater than n, where the depth of a
type is defined by:

depth({ν : σ | P}) = depth(σ)

depth(int) = 0

depth((x : τ1)→ τ2) = 1 + max{depth(τ1), depth(τ2)}
depth(

∏n
i=1 (xi: ρi)) = max

1≤i≤n
{depth(ρi)} .

In addition to the usual scope rules and well-typedness conditions of refinement predicates (that have been
explained already in Section 2.1), the rules ensure that (i) only depth-1 function variables (i.e., variables of
types whose depth is 1) may occur in refinement predicates, (ii) in a type of the form (x : τ1)→ {ν : σ | P}

7

Γ | ∅ `WF P
Γ `WF P

(WF-PREDINIT)

Γ | ∅ `WF τ
Γ `WF τ

(WF-INIT)

ST(ElimHO0(Γ), ElimHO1(∆)) `S t : int

Γ | ∆ `WF t
(WF-PREDTERM)

Γ | ∆ `WF P1 Γ | ∆ `WF P2

Γ | ∆ `WF P1 ∧ P2

(WF-PREDAND)

Γ | ∆, y1 : int, . . . , yn : int `WF P
Γ | ∆ `WF ∀y1, . . . , yn. P

(WF-PREDFORALL)

Γ,∆ | ∅ `WF σ Γ | ∆, x : σ `WF P
Γ | ∆ `WF {x : σ | P}

(WF-REFINE)

Γ | ∆ `WF int
(WF-INT)

Γ,∆ | ∅ `WF τ1 Γ,∆ | x : τ1 `WF τ2
Γ | ∆ `WF (x : τ1)→ τ2

(WF-FUN)

Γ | ∆ `WF τ1 Γ | ∆, x : τ1 `WF τ2
Γ | ∆ `WF (x : τ1)× τ2

(WF-PAIR)

`WF ∅
(WF-ENIL)

`WF Γ Γ `WF τ (x :) /∈ Γ

`WF Γ, x : τ
(WF-ECONS)

ElimHOn(Γ)
def
= {(x : τ) ∈ Γ | depth(τ) ≤ n}

Γ,∆ ::= ∅ | Γ, x : τ

Figure 4: Well-formedness of types

8

where τ1 is a depth-1 function type, x may occur in P but not in σ (there is no such restriction if τ1 is a depth-0
type), and (iii) in a type of the form (f1: τ1)×{f2 : σ2 | P2}×· · ·×{fn : σn | Pn}, f1 may occur in P2, . . . , Pn
but not in σ2, . . . , σn.

2. In a refinement predicate ∀x1, . . . , xn. ∧j tj , for every tj , if xi occurs in tj , there must be an occurrence of
application of the form f(. . . , xi, . . .). Also, for every tj , if a function variable f occurs, every occurrence
must be as an application ft.

3. The special primitive fail must not occur in any refinement predicate. Also, in every application t1t2 in a
refinement predicate, t2 must not contain function applications nor fail. (In other words, t2 must be effect-free,
in the sense that it neither diverges nor fails.)

4. Abstractions (i.e., fix(f, λx. t)) must not occur in refinement predicates, except in the form let x = t in t′.

5. In refinement predicates, usual if-expressions are not allowed; instead we allow “branch-strict” if-expression
ifs t then t1 else t2 where t1 and t2 are both evaluated before the evaluation of t. This is equivalent to
t1; t2; if t then t1 else t2; hence, in other words, we allow if-expressions only in this form.

Please note that the above restrictions are essential only for the refinement predicates that occur in σ of a given

type checking problem
?

|= t : {ν : σ | P} rather than the top level refinement P ; since given

?

|= t : {ν : σ | ∀x̃. ∧i ti}

where ∀x̃. ∧i ti does not satisfy the restrictions above, we can replace it by an equivalent problem

?

|= let ν = t in (ν, (λx̃. ti)i) : σ ×
∏
i

(intn→{r : int | r}).

Remark 1. As in the case above, there is often a way to avoid the restrictions 1–5 listed above. A more fundamental
restriction (besides the restriction that only first-order function variables may be used in refinement predicates), which
is imposed by the syntax of refinement predicates defined in Section 2.1, is that existential quantifiers cannot be used.
Due to the restriction, we cannot express the type:

n : int→ {f : int→ int | ∃x.1 ≤ x ≤ n ∧ f(x) = 0} → {ν : int | ν = 1} ,

which describes a higher-order function that takes an integer n and a function f , and returns 1 if there exists a value
x such that 1 ≤ x ≤ n ∧ f(x) = 0. This is a typical specification for a search function.

3. Encoding Functional Refinement

In this section, we present a transformation (−)
] for reducing a general refinement type checking problem to the

first-order refinement type checking problem. In the rest of the paper, we use the assumptions explained in Section 2.1.
We first explain the ideas of the transformation (−)

] informally in Section 3.1. We give the formal definition of
the transformation in Section 3.2. Finally in Section 3.3, we show the soundness of our verification method that uses
(−)

].

3.1. Idea of the Transformation

The transformation (−)
] is in fact the composition of four transformations: ((((−)]1)]2)]3)]4 . We explain the idea

of each transformation from (−)
]4 to (−)

]1 in the reverse order of the applications, since (−)
]4 is the key step and the

other ones perform preprocessing to enable the transformation (−)
]4 .

9

]4: Elimination of universal quantifiers and function symbols from a refinement predicate
We first discuss a simple case, where there occurs only one universal quantifier and one function symbol in a
refinement predicate. Consider a refinement type of the form

{f : int→ int | ∀x. P [f x]}

where P [f x] contains just one occurrence of f x and no other occurrences of function variables. It can be
encoded into the first-order refinement type

(x : int)→{r : int | P [r]}.

By the semantics of types, the latter type means that, for all argument x, its “return value” r (i.e., fx) satisfies
P [r]. The application f x in the former type is expressed by the refinement variable r of the return value type,
and the original quantifier ∀x is encoded by the function type, or more precisely, “for all” in the semantics of
the function type.

Now, let us consider a more general case where multiple function symbols occur. Given the type checking
problem

?

|= (t1, t2) : {(f, g) : (τ1→ τ ′1)× (τ2→ τ ′2) | ∀x1, x2. P [f x1, g x2]}
where each of the two different function variables occurs once in P [f x1, g x2], we can transform it to:

let f = t1 in let g = t2 in λ(x1, x2). (f x1, g x2) : ((x1, x2) : τ1 × τ2)→{(r1, r2) : τ ′1 × τ ′2 | P [r1, r2]}.

As in the case above for a single function occurrence, the transformation preserves the validity of the judgment.

To apply the transformation above, the following conditions on the refinement predicate (the part ∀x1, x2. P [f x1, g x2]
above) are required. (i) all the occurrences of function variables (f and g) are distinct from each other (ii) func-
tion arguments (x1 and x2 above) are variables rather than arbitrary terms, and they are distinct from each
other, and universally quantified (iii) function variables f and g in a predicate P in {ν : σ | P} are declared at
the position of ν. Those conditions are achieved by the preprocessing (−)

]3 , (−)
]2 , and (−)

]1 explained below.

]3 Replication of functions
If a function variable occurs n (> 1) times in a refinement predicate, we replicate the function and make a tuple
consisting of n copies of the function. For example, for a typing

t : {f : int→ int | P [f x, f y]}

where f occurs exactly twice, we transform this to

let f = t in (f, f) :
{

(f1, f2) : (int→ int)2
∣∣ P [f1 x, f2 y]

}
,

so that each of the function variables f1 and f2 now occurs just once in the refinement predicate.

]2 Normalization of function arguments in refinement predicates
In this step, we ensure that all the function arguments in refinement predicates are variables, different from each
other, and quantified universally.

Given a type of the form:
{f : int→ int | ∀x̃. P [f t]}

where P [−] is a context with one occurrence of the hole [] and t is either a non-variable, or a quantified variable
xi ∈ {x̃} but there is another occurrence of xi, we transform this to

{f : int→ int | ∀x̃, y. y = t => P [f y]}

where y is a fresh variable.

Recall that => is an expression-level Boolean primitive. Thus, the transformation above preserves the semantics
of types only if t is effect-free; this is guaranteed by Assumption 3 in Section 2.3.

10

]1 Removal of dependencies between functional arguments and return types
In Step]4 above, we assumed “(iii) function variables . . . in a predicate P in {ν : σ | P} are declared at the
position of ν”; this can be relaxed so that a function variable in P may be bound at the position of f in
(f : τ)→{ν : σ | P} as described below. A judgment

?

|= t : (f : τ1→ τ2)→{ν : τ | P}

can be transformed to

?

|= let g = t in λf ′. (f ′, g f ′) : (f : τ1→τ2)→{(f ′, ν): (f ′: τ1→ τ2)× τ | P [f 7→ f ′]}

where the function variable f ′ is fresh. Here, the function argument has been copied and attached to the return
value, so that P may refer to the original argument.

In Section 1, (−)
]1 has been used for the example of append2. We now demonstrate uses of (−)

]2 and (−)
]4

with the other example in Section 1:

?

|= (sum,sum2) : (f : int→ int)× {g : int→ int | ∀n. g(n) = f(n)} .

The refinement predicate is transformed by (−)
]2 to

∀n, n1, n2. n1 = n => n2 = n => g(n1) = f(n2),

which is equivalent to

∀n1, n2. n1 = n2 => g(n1) = f(n2).

By (−)
]4 , the above type checking problem is reduced to the following one:

?

|= λ(n1, n2). (sumn1,sum2n2) :
(
(n1, n2) : int2

)
→
{

(r1, r2) : int2
∣∣ n1 = n2 => r2 = r1

}
.

One may notice that the result of the transformation above is different from that of sum and sumacc in Section 1,
which is obtained by applying a further transformation explained in Section 4.

3.2. Transformations

We give formal definitions of the transformations (−)
]1 , (−)

]2 , (−)
]3 , and (−)

]4 in this order.
For the sake of simplicity, w.l.o.g., we assume that every term has a type of the following form:

τ ::=
{
ν :

n∏
i=1

xi: int×
m∏
j=1

(
fj : (yj : τj)→ τ ′j

) ∣∣∣ P }.
In fact, any type (and accordingly terms of that type) can be transformed to the above form: e.g.,

{(f, x) : (f : {f : τ→τ ′ | P1})× {x : int | P2} | P}

can be transformed to
{(x, f) : int× (τ→τ ′) | P1 ∧ P2 ∧ P} .

(The logical connective ∧was introduced as a primitive in Section 2 for this purpose.) For an expression t of the above
type, we write print

i (t) to refer to the i-th integer (i.e., xi), and pr→j (t) to refer to the j-th function (i.e., fj). The
operators print

i and pr→j can be expressed by compositions of the primitive pri in Section 2.1. Inside the refinement
predicate P above, we sometimes write xi and fj to denote print

i ν and pr→j ν respectively.

11

({
ν :

n∏
i=1

xi: int×
m∏
j=1

fj : ((yj :τj)→ τ ′j)
∣∣∣ P })]1 def

=
{
ν :

n∏
i=1

xi: int×
m∏
j=1

(
fj : (yj :τj)→ τ ′j

)]1∣∣∣ P}
(((yk)k:τ)→ τ ′)

]1 def
=
(
(yk)k: (τ)

]1
)
→
(
(y′k)k∈D(1) : τ (1)

)
×
(

(τ ′)
]1 [yk 7→ y′k]k∈D(1)

)
where, for the type τ = {(yk)k :

∏
k (yk: ρk) | P},

D(1)
def
= {k | ρk is depth-1}

τ (1)
def
=
{

(yk)k∈D(1) :
∏
k∈D(1) (yk: ρk)

∣∣∣ P}
Note that (τ)

]1 = τ if τ is order at most 1; hence we have the obvious projection pr(1) : (τ)
]1 → τ (1), which

is used below.

(fix(f, λx. t))
]1 def

= fix(f, λx. (pr(1)x, (t)
]1))

(t1 t2)
]1 def

= pr2((t1)
]1 (t2)

]1)

Figure 5: Returning Input Functions (−)]1

]1: Removal of Dependencies between Functional Arguments and Return Types
Figure 5 shows the key cases of the definition of the transformation (−)

]1 for types and terms. For types, (−)
]1

copies (the depth-1 components of) the argument type of a function type to the return type. For example, a refinement
type of the form

((x, f): int×(int→int))→{r:σ | P (r, x, f)}

is transformed to a type of the form

((x, f): int×(int→int))→ (f ′: (int→int))×{r:σ | P (r, x, f ′)}.

Note that the return type no longer depends on the argument f .
As for the term transformation, in the rule for fix(f, λx. t), (the depth-1 components of) the argument x is added

to the return value. In the rule for t1t2, (t1)
]1 (t2)

]1 returns a pair of (the depth-1 components of) the value of t2 and
the value of t1t2; therefore, we extract them by applying the projection. For example, the term

fix(f, λ(x, g). if x ≤ 0 then 0 else g x+ f (x− 1, g))

is transformed to

fix(f, λ(x, g). (g, if x ≤ 0 then 0 else pr2(g x) + pr2(f (x− 1, g)))).

After the transformation (−)
]1 , the type of the program satisfies a more restricted well-formedness condition,

obtained by replacing all judgments Γ | ∆ `WF P in Figure 4 with Γ,∆ | `WF P .

]2: Normalization of Function Arguments in Refinement Predicates
Figure 6 defines the transformation (−)

]2 . In the figure, & is an expression-level Boolean conjunction, and ∧k tk
abbreviates t1 ∧ · · · ∧ tk. For each occurrence of application (f t′)i in P (where i denotes its position in P , used to
discriminate between multiple occurrences of the same term f t′; i is omitted if it is clear), we prepare a fresh variable
z〈(f t

′)i〉; for an occurrence of a term ti in P , app(ti) is the set of occurrences of applications in ti; sArg(ti) is the
term obtained by replacing the argument t′ of each (f t′)i ∈ app(ti) with z〈(f t

′)i〉; and argEq(−) equates such t′ and
z〈(f t

′)i〉. In the figure, eOQ(−) eliminates the original quantifiers ∀x̃i as follows: by the assumption 2 in Section 2.3,
for each i and k, if xi occurs in tk, then xi occurs at least once as the argument of an application, and so there is some
zik such that (zik = xi) ∈ argEq(tk); hence ∀xi can be eliminated by substituting zik for xi.

12

({
ν:

n∏
i=1

(xi:int)×
m∏
j=1

(
fj : (yj :τj)→ τ ′j

) ∣∣∣ P })]2 def
={

ν:
n∏
i=1

(xi:int)×
m∏
j=1

(
fj :
(
yj : (τj)

]2
)
→
(
τ ′j
)]2) ∣∣∣ (P)

]2
}

(∀x1, . . . , xn. ∧k tk)
]2 def

= eOQ
(
∀x̃i.∀z̃k,l ∧k

(
argEq(app(tk)) => sArg(tk)

))
def
= ∀z̃k,l ∧k

((
argEq(app(tk)) => sArg(tk)

)
[xi 7→ zik]

)
where sArg and argEq are defined as below, and the variables zk,1, . . . , zk,mk

are all the elements of
{ z〈(f t)i〉 | (f t)i ∈ app(tk) }.

sArg((f t)i)
def
= f z〈(f t)

i〉

sArg(ti) is defined compositionally when t is not an application

argEq({a1, . . . , am})
def
= argEq({a1}) & · · ·& argEq({am})

argEq({(f t)i}) def
= (z〈(f t)

i〉 = sArg(t))

Figure 6: Normalization of function arguments (−)]2

For example, consider the type

{(f, g): (int→ int)× (int→ int) | ∀x. f x = g x}.

Let t be (f x = g x) and P be ∀x. t, then

app(t) = {f x, g x} ,
argEq(app(t)) = argEq(f x) & argEq(g x)

= (z〈fx〉 = sArg(x)) & (z〈gx〉 = sArg(x))

= (z〈fx〉 = x) & (z〈gx〉 = x),

sArg(f x = g x) = (f z〈fx〉 = g z〈gx〉),

and the transformed predicate before eOQ(−) is

∀x, z〈fx〉, z〈gx〉. z〈fx〉= x & z〈gx〉= x => f z〈fx〉= g z〈gx〉.

By applying eOQ(−), we obtain:

∀z〈fx〉, z〈gx〉. z〈fx〉= z〈fx〉 & z〈gx〉= z〈fx〉 => f z〈fx〉= g z〈gx〉,

which may be simplified further to

∀z〈fx〉, z〈gx〉. z〈fx〉= z〈gx〉 => f z〈fx〉= g z〈gx〉.

]3: Replication of Functions
As explained in Section 3.1, (−)

]3 replicates a function fj according to the number mj of occurrences of fj in

the predicate P of a refinement type τ =
{
ν :
∏n
i=1 int×

∏`
j=1

(
fj : τj → τ ′j

) ∣∣∣ P}; we call mj the multiplicity of

fj and write mul(τ, j) or mul(P, j). We call the sequence (mj)j = m1 · · ·m` the multiplicity of τ .

13

({
ν :

n∏
i=1

(xi: int)×
m∏
j=1

(
fj : τj → τ ′j

) ∣∣∣ P })]3
φ

def
=

{
ν :

n∏
i=1

(xi: int)×
m∏
j=1

mj∏
l=1

(fj,l: (τj)
]3
φj
→
(
τ ′j
)]3
φ′j

))
∣∣∣ P ′ }

where, φ = {{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) | M}}; mj = M(j); let aj,1, . . . , aj,m′j be all the occurrences of

applications of fj occurring in P and let m′j be mul(P, j) (m′j ≤ mj since τ ≤mul φ); and

P ′
def
= P [aj,l 7→ fj,l tj,l]j∈{1,...,m},l∈{1,...,m′j} (where aj,l = fj tj,l)

(fix(f, λx. t))
]3
T

def
=
−−−−−−−−−−−−−−−−−−→
fix(f, λx. (t)

]3
T [f 7→

−→
f
m

])
m

where m = T (fix(f, λx. t)) and
−→
t
m

= (t, ..., t︸ ︷︷ ︸
m

) for a term t

(t1 t2)
]3
T

def
=
(
pr1(t1)

]3
T

)
(t2)

]3
T

Figure 7: Replication of functions (−)]3

The transformation (t)
]3 is parameterized by a multiplicity type φ for types, and a multiplicity annotation T for

terms. The multiplicity types are defined by the following grammar:

φ ::= {{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) |M}}

Here, M is a function from {1, . . . ,m} to positive integers such that M(j) = 1 if φj→ φ′j is not depth-1. Intuitively,
M(j) denotes how many copies should be prepared for the j-th function (of type φj→φ′j). For a refinement type τ ={
ν :
∏n
i=1 (xi: int)×

∏m
j=1

(
fj : τj → τ ′j

) ∣∣∣ P} and a multiplicity type φ = {{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) | M}},

we write τ ≤mul φ if all the multiplicities in τ are pointwise less than or equal to those in φ, i.e., if mul(P, j) ≤M(j),
τj ≤mul φj , and τ ′j ≤mul φ

′
j for all j. Intuitively, τ ≤mul φ means that copying functions according to φ is sufficient

for keeping track of the correlations between functions expressed by τ . Thus, in the transformation rule for types in
Figure 7, we assume that τ ≤mul φ, and replicate each function type according to φ.

The multiplicity annotation T used in the transformation of terms maps each (occurrence of) subterm to its mul-
tiplicity. Here, if a subterm has simple type intn ×

∏`
j=1 (τj → τ ′j), then its multiplicity is a sequence m1 · · ·m`

of positive integers. In the case for abstractions, as explained in Section 3.1, a function fix(f, λx. t) is copied to an
m-tupled function where m is the multiplicity of fix(f, λx. t). In the case for applications, correspondingly to the
case for abstractions, the function t1 is replaced with its m-copies; after that we have to insert projection pr1 for
matching types correctly.

Given a type checking problem
?

|= t : τ , we infer φ and T automatically (so that the transformation (−)
]3 is fully

automatic). For multiplicity types, we can choose the least φ such that τ ≤mul φ, and determine T (t) according to
φ. For some subterms, however, their multiplicity annotations are not determined by τ ; for example, if t = t1t2, then
the multiplicity of t2 depends on the refinement type of t2 used for concluding |= t1 t2 : τ . For such a subterm t′,
we just infer the value of T (t′). Fortunately, as long as φ and T satisfy a certain consistency condition (for example,
in if t0 then t1 else t2, it should be the case that T (t1) = T (t2)), the transformation is sound (see Section 3.3).
Since larger φ and T are more costly but allow us to keep track of the relationship among a larger number of more
function calls (for example, if T (f) = 2, then we can keep track of the relationship between two function calls of f ;
that is sufficient for reasoning about the monotonicity of f), in the actual verification algorithm, we start with minimal
consistent φ and T , and gradually increase them until the verification succeeds.

]4: Elimination of Universal Quantifier and Function Symbols
Figure 8 defines the transformation (−)

]4 . For a type τ , we write τ⊥ for the option type τ + 1; we explain this
later.

For the transformation of refinement predicates, we use the functions ĵ(−) and ẑ(−) defined as follows. For
an input type {((xi)i≤n, (fj)j≤m) : . . . | P} of (−)

]4 , we can assume that by (−)
]1 , function symbols occurring

14

(
{ ν :

n∏
i=1

(xi: int)×
m∏
j=1

(
fj : (yj : τj)→ τ ′j

)
| P }

)]4
def
=

n∏
i=1

(xi: int)×

((
(yj)j :

m∏
j=1

(
(τj)

]4
)
⊥

)
→
{

(rj)j :
m∏
j=1

((
τ ′j
)]4)

⊥

∣∣∣ (P)
]4
})

where, let a1, . . . , am′ be all the occurrences of applications in P , then, for P = ∀z1, . . . , zm′ . ∧k tk,

(P)
]4 def

= ((∧ktk)[al 7→ rĵ(al)]l≤m′)[ẑ
(al) 7→ yĵ(al)]l≤m′ .

((t1, . . . , tn, t
′
1, . . . , t

′
m))

]4 def
=

let x1 = (t1)
]4 in · · · let xn = (tn)

]4 in

let f1 = (t′1)
]4 in · · · let fm = (t′m)

]4 in
(
x1, . . . , xn, λy. (f1 (pr1y), . . . , fm (prmy))

)
where ti are integers and t′i are functions.(

print
i t
)]4 def

= pri (t)
]4(

pr→j t
)]4 def

= let w = (t)
]4 in t′

where t′ def= λy.prj((prn+1w)(

j−1︷ ︸︸ ︷
⊥, . . . ,⊥, y,⊥, . . . ,⊥︸ ︷︷ ︸

m

))

and n and m are the numbers of the integer components and the function type components in the simple type of
t, respectively.

Figure 8: Elimination of universal quantifiers and function symbols from a refinement predicate (−)]4

15

in a refinement predicate are in {fj | j ≤ m}; and that by (−)
]2 and (−)

]3 , all application occurrences in P have
distinct function variables, and have distinct argument variables that quantified universally. Thus, there is an injection
ĵ(−) from the set X of occurrences of applications in P to {j | j ≤ m} such that for any application occurrence ft,
f = fĵ(ft); and also there is a bijection ẑ(−) from the same set X to the set of the variables that are universally in P .

For example, let us continue the example used for]2:

{ (f, g): (int→ int)× (int→ int) | ∀z〈fx〉, z〈gx〉. z〈fx〉= z〈gx〉 => f z〈fx〉= g z〈gx〉 }.

The transformed type is of the form

((y1, y2): int⊥ × int⊥)→
{

(r1, r2) : int⊥ × int⊥

∣∣∣ (. . .)
]4
}
.

The occurrences of applications are:
a1 = f z〈fx〉, a2 = g z〈gx〉,

and
ẑ(f z

〈fx〉) = z〈fx〉, ẑ(g z
〈gx〉) = z〈gx〉.

Since the functions f and g are declared in this order,

ĵ(f z〈fx〉) = 1, ĵ(g z〈gx〉) = 2.

Hence, the predicate (. . .)
]4 is y1 = y2 => r1 = r2 and the transformed type is

((y1, y2): int⊥ × int⊥)→{(r1, r2) : int⊥ × int⊥ | y1 = y2 => r1 = r2}.

The transformation of terms follows the ideas described in Section 3.1 except that option types have been intro-
duced. For example, the term (λy1. t1, λy2. t2) is transformed into the term

λ(y1, y2).
(
if y1 = ⊥ then ⊥ else (t1)

]4 , if y2 = ⊥ then ⊥ else (t2)
]4
)
. (1)

Here, ⊥ is the exception of option types (i.e. None in OCaml or Nothing in Haskell), and we have omitted a
destruction from τ⊥ to τ above. The option type (and the conditional branch if x = ⊥ then . . .), is used to preserve
the side effect (divergence or failure). For example, consider the following program:

let rec f x = ... and g y = g y in
let main n = assert (f n > 0)

This program defines functions f and g but does not use g. The body of the main function is transformed to
fst(fg(n,⊥))>0, where fg is a (naı̈vely) tupled version of (f,g), which simulates calls of f and g simulta-
neously. Without the option type, the simulation of a call of g would diverge.

As for the transformation of tuples in Figure 8, tuples of functions are transformed to functions on tuples as
described in Section 3.1. Tuples of integers are just transformed in a compositional manner. In the case for pro-
jections, we can assume that (t)

]4 (= x) is a tuple consisting of integers and a single function. If prit is a func-
tion, pri−n(x (⊥, . . . ,⊥, w,⊥, . . . ,⊥)) should correspond to (prit)w. Hence, the output of the transformation is
λw.pri−n(x (⊥, . . . ,⊥, w,⊥, . . . ,⊥)). Otherwise, prit is just transformed in a compositional manner.

Finally, we define (−)
]
T as the composition of the transformations:

(t)
]
T = ((((t)]1)]2)]3T)]4 .

3.3. Soundness of the Transformation

The transformation (−)
] reduces type checking of general refinement types (with the assumptions in Section 2.3)

into that of first-order refinement types, and its soundness is ensured by Theorem 1 below.

16

Φ(x) = φ

Φ `c x : φ
(C-VAR)

Φ `c n : {{int | ∅}}
(C-CONST)

Φ `c t : {{int | ∅}} Φ `c t1 : φ Φ `c t2 : φ

Φ `c if t then t1 else t2 : φ
(C-IF)

The arity of [[op]] is n Φ `c ti : {{int | ∅}}
Φ `c op(t1, . . . , tn) : {{int | ∅}}

(C-OP)

Φ, f : {{φ1→ φ2 |M}}, x : φ1 `c t : φ2

Φ `c fix(f, λx. t) : {{φ1→ φ2 |M}}
(C-FIX)

Φ `c t : {{φ1→ φ2 |M}} Φ `c t1 : φ1

Φ `c t t1 : φ2
(C-APP)

Φ `c ti : {{int | ∅}} Φ `c t′j : {{φj → φ′j |M(j)}} (∀i, j)
Φ `c (t̃i, t̃′j) : {{

∏n
i=1 int×

∏m
j=1 (φj → φ′j) |M}}

(C-TUPLE)

Φ `c t : {{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) |M}}

Φ `c print
i t : {{int | ∅}}

(C-PROJI)

Φ `c t : {{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) |M}}

Φ `c pr→j t : {{φj → φ′j |M(j)}}
(C-PROJF)

Φ `c fail : φ
(C-FAIL)

Φ ::= ∅ | Φ, x : φ

Figure 9: Type system for multiplicity types

17

In the theorem, for a given typing judgment
?

|= t : τ , we assume a condition called consistency on multiplicity
annotation T and multiplicity type φ. The definition, which we give now, may be skipped at the first reading; intu-
itively, T and φ are consistent (for t and τ) if it makes consistent assumptions on each subterm, so that the result of
the transformation is simply-typed.

First, we introduce a type system for a term t and a multiplicity type φ in Figure 9. For a derivation of Φ `c t : φ
in this type system, we can define a multiplicity annotation T of t as below: every subterm t′ of t has the judgement
Φ′ `c t′ : φ′ in the derivation, where

φ′ = {{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) |M}},

and then we can define T (t′) as (M(j))j≤m.
For a multiplicity annotation T of a term t and a multiplicity type φ, T and φ are consistent if T is the multiplicity

annotation defined as above from some derivations of Φ `c t : φ for some Φ. We also call such pair (T, φ) consistent
pair for t. Conversely, for (T, φ) and Φ, such derivation is unique if exist. Hence, for a closed term t, we identify a
consistent pair (T, φ) with a derivation of `c t : φ.

Theorem 1 (Soundness of Verification by (−)
]). Let t be a closed term and τ be a type of order at most 2. Let T and

φ be a multiplicity annotation and a multiplicity type for ((t)]1)]2 and ((τ)]1)]2 and suppose that they are consistent
and τ ≤mul φ. Then,

|= (t)
]
T : (τ)

]
φ implies |= t : τ .

We give a proof of this theorem in Appendix C. The converse of Theorem 1, completeness, holds for order-1
types, but not for order-2: see Section 4.2.

As explained in Section 3.2, we automatically infer φ and T such that they are consistent and τ ≤mul φ, and
gradually increase them until the verification succeeds. Thus, the transformation is automatic as a whole.

3.4. Sufficient Condition for Consistency

The next proposition gives a sufficient condition for consistency, which can be used to automatically guess con-
sistent multiplicity annotations. Before that, we prepare terminology and a lemma.

A multiplicity annotation T of a term t is constant with k (k ≥ 0) if, for any subterm t′ whose simple type is
intn ×

∏`
j=1 (τj → τ ′j), T (t′)(j) = k if τj → τ ′j is depth-1 and T (t′)(j) = 1 otherwise. Similarly, a multiplicity

type φ = {{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) | M}} is constant with k (k ≥ 0) if M(j) = k for every j such that fj is

depth-1, and also all the φj and φ′j are constant with k, inductively. For a multiplicity type judgment Φ `c t : φ, we
say it is constant with k if all the multiplicity types in Φ and φ are constant with k.

Lemma 2. If Φ `c t : φ is constant with k, there is a derivation of Φ `c t : φ whose all the occurrences of judgments
are constant with k.

Proof. Straightforward by induction on t: for any Φ `c t : φ there is exactly one rule among the ten rules in Figure 9
whose conclusion part agree with Φ `c t : φ, and we can choose at least one rule instance of the rule so that the
assumption part consists of only judgments that are constant with k.

Proposition 3. For a multiplicity annotation T of a term t and a multiplicity type φ, if both T and φ are constant with
some common k ≥ 0, then T and φ are consistent.

Proof. For given T and φ that are constant with k, let κ be the simple type of φ; then, we can infer a simple type
environment Γ such that Γ ` t : κ. It is clear that the mapping from multiplicity types that are constant with k to
simple types is bijective; by this correspondence we obtain from Γ the multiplicity type environments Φ whose all the
multiplicity types are constant with k.

By Lemma 2, there is a derivation of Φ `c t : φ whose all the occurrences of judgments are constant with k. Since
T is constant with k, T is equal to the multiplicity annotation defined from the derivation of Φ `c t : φ.

18

4. Transformations for Enabling First-Order Refinement Type Checking

The transformation (−)
] in the previous section allowed us to reduce the refinement type checking |= t : τ to the

first-order refinement type checking |= (t)
]

: (τ)
], but it does not necessarily enable us to prove the latter by using the

existing automated verification tools [12, 17, 16, 9, 19, 13]. This is due to the incompleteness of the tools for proving
|= (t)

]
: (τ)

]. They are either based on (variations of) the first-order refinement type system [20] (see Appendix B
for such a refinement type system), or higher-order model checking [9, 8], whose verification power is also equivalent
to a first-order refinement type system (with intersection types). In these systems, the proof of |= t : τ (where τ is
a first-order refinement type) must be compositional: if t = t1t2, then τ ′ such that |= t1 : τ ′ → τ and |= t2 : τ ′ is
(somehow automatically) found, from which |= t1t2 : τ is derived. The compositionality itself is fine, but the problem
is that τ ′ must also be a first-order refinement type, and furthermore, most of the actual tools can only deal with linear
arithmetic in refinement predicates. To see why this is a problem, recall the example of proving sum and sum2 in
Section 1. It is expressed as the following refinement type checking problem:

?

|= (sum,sum2) : (sum : int→ int)× ((n : int)→{r : int | r = sum(n)}).

It can be translated to the following first-order refinement type checking problem:

?

|= λ(x, y). (sumx,sum2 y) : ((x, y) : int2)→ {(r1, r2) : int2 | x = y ⇒ r1 = r2}.

However, for proving the latter in a compositional manner using only first-order refinement types, one would have to
infer the following non-linear refinement types for sum and sum2:

(x : int)→{r : int | (x ≤ 0⇒ r = 0) ∧ (x > 0⇒ r = x(x+ 1)/2)}.

To deal with the problem above, we further refine the transformation (−)
] by (i) tupling of recursive functions [3]

and (ii) insertion of assumptions.

4.1. Tupling of Recursion
The idea is that when a tuple of function calls is introduced by (−)

]4 ((f1 (pr1y), . . . , fm (prmy)) in Figure 8
and (sumx,sum2 y) in the example above), we introduce a new recursive function for computing those calls simul-
taneously. For the example above, we introduce a new recursive function sum sum2 defined by:

let rec sum_sum2 (x,y) = sum_sumacc(x,y,0)
and sum_sumacc(x,y,m) = if x<0 then if y<0 then (0,0) else ...

More generally, we combine simple recursive functions as follows. Consider the program:

let f = fix(f, λx. if t11 then t12 else E1[f t1]) in

let g = fix(g, λy. if t21 then t22 else E2[g t2]) in ... (f, g) ...

where E1 and E2 are evaluation contexts, and tij , Ei, and ti have no occurrence of f nor g. Then, we replace
λ(x, y). (f x, g y) in (−)

]4 with the following tupled version:

λ(x′, y′). let = f x′ in

fix
(
h, λ(x, y).

if t11then if t21 then (t12, t22) else (t12, E2[g t2])

else if t21then (E1[f t1], t22)

else let (r1, r2) = h (t1, t2) in (E1[r1], E2[r2])
)
(x′, y′).

The first application f x′ is inserted to preserve side effects (i.e., divergence and failure fail). To see why it is
necessary, consider the case where t11 = true, t12 = fail and t21 = Ω. The call to the original function fails, but
without let = f x′ in · · ·, the call to the tupled version would diverge.

The function sum sumacc shown in Section 1 can be obtained by the above tupling (with some simplifications).

19

4.2. Insertion of Assume Expressions
The above refinement of (−)

]4 alone is often insufficient. For example, consider the problem of proving that the
function:

let diff (f,g) = fun x -> f x - g x

has the type

τ
def
=

{
(f, g) : (int→ int)2

∣∣ ∀x. f x > g x
}
→ {h : int→ int | ∀x. h x > 0}.

The function is transformed to the following one by (−)
]4 :

let diff fg = fun x ->
let r1,r2 = fg (x, ⊥) in
let r1’,r2’ = fg (⊥, x) in r1 - r2’

and the type τ is transformed to((
(x1, x2) : int2

)
→
{

(r1, r2): int2
∣∣ x1 = x2 ⇒ r1 > r2

})
→
(
int→{r: int | r > 0}

)
.

Here, ⊥ is used as a dummy argument as explained in Section 3.2-]4. We cannot conclude that r1 − r2’ has type
{r: int | r > 0} because there is no information about the correlation between r1 and r2’: from the refinement type
of fg, we can infer that x = ⊥ ⇒ r1 > r2 and ⊥ = x ⇒ r′1 > r′2, but r1 > r2′ cannot be derived.6 In fact,
|= (diff)

]
: (τ)

] does not hold,7 which is a counterexample of the converse of Theorem 1.
To overcome the problem, we insert the following assertion just after the second call:

assume(let (r1’’,r2’’) = fg(x,x) in r1=r1’’ & r2’=r2’’)

Here, assume(t) is a shorthand for if t then true else loop() where loop() is an infinite loop. From fg(x,x),
we obtain r1’’ > r2’’ by using the refinement type of fg. We can then use the assumed condition to conclude
that r1 > r2’. In general, whenever there are two calls

let r1,r2 = fg (x, ⊥) in
C[let r1’,r2’ = fg (⊥, y) in ...]

(where C is some context), we insert an assume statement as in

let r1,r2 = fg (x, ⊥) in
C[let r1’,r2’ = fg (⊥, y) in

assume(let (r1’’,r2’’) = fg(x,y) in r1=r1’’ & r2’=r2’’); ...]

We now define a refined transformation (−)
]′ , which is the above assume-inserted version of (−)

]. The refinement
is needed for both (−)

]3 and (−)
]4 , so we define (−)

]′34 , which is a modification of ((−)]3)]4 , and define (−)
]′ as

((−)]1)]
′
34 . Note that (−)

]2 is identity on terms.
For the simplicity of the definition, we assume without loss of generality that input programs of (−)

]′ (and hence
(−)

]1) are in a variant of A-normal form defined in Figure 10. Here, we write λ(x1, . . . , xn). t for λx. let x1 =
pr1x in . . . let xn = prnx in t where x is a fresh variable. By α-renaming, we assume that the two variables
declared by any two different occurrences of let-expressions in an A-normal form are different.

We redefine the transformation (−)
]1 according to the normal form; the essential part of the new definition of

(−)
]1 is shown in Figure 11. Output programs of this (−)

]1 are in another normal form defined in Figure 12, which
is the domain of the transformation (−)

]′34 , which is defined in the next subsection.

6One may think that we can just combine the two calls of fg as

let diff fg =
fun x -> let r1,r2 = fg(x,x) in r1-r2’

This is certainly possible for the example above, but it is in general difficult if the occurrences of the two calls of fg are apart.
7To see this, apply (diff)] to

λ(x1, x2). if x1 = x2 then (1, 0) else (0, 0)

and apply the returned value to, say, 0.

20

M (programs) ::= (x1, . . . , xm) | if x then M1 else M2 | let x = e in M
t (terms) ::= e | if x then t1 else t2 | let x = e in t
e ::= n | x | op(x1, . . . , xn) | fix(f, λ(x1, . . . , xn). t) | f (x1, . . . , xn) | fail

Figure 10: Normal form before (−)]1

(fix(f, λ(x1, . . . , xn). t′))
]1 def

= fix(f, λx. ((t′)
]1 , x1, . . . , xn))

(let x = f (x1, . . . , xn) in t)
]1 def

= let z = f (x1, . . . , xn) in let x = pr1z in

let x′1 = pr1(pr2z) in . . . let x′n = prn(pr2z) in

(t)
]1 [x1 7→x′1, . . . , xn 7→x′n]

Figure 11: (−)]1 for normal forms

4.3. Definition of (−)
]′34 and Soundness of (−)

]′

Here, we formalize the idea explained in Section 4.2 as a transformation (−)
]′34 .

The transformation of (−)
]′34 for types is the same as ((−)]3)]4 . Figure 13 shows the definition of (−)

]′34
T on terms.

The definition uses an auxiliary function InstVar defined below, and this is the essential part: InstVar synthesizes
new applications (like fg (x, x)) and inserts the assumptions illustrated above. As (−)

]3
T , (−)

]′34
T also depends on a

multiplicity annotation T . In the figure, B is a set of bindings (i.e., pairs of variables and terms) that are used in
InstVar; for a subterm t of a term t0, B of (t)

]′34
T,B occurring in the definition of (t0)

]′34
T is the set of all the bindings of

destruction terms that are already declared at the position of t in t0. Except for the case of applications, the definition
of (−)

]′34 is just an obvious combination of those of (−)]3 and (−)]4 .
Now, we define the auxiliary function InstVar:

InstVar(g, T,B, t)
def
= let g′ =



λỹ. let x = g ỹ in

let z〈α
1〉 = B]g(α

1) in

· · ·
let z〈α

q〉 = B]g(α
q) in

assume (p) ; assume (p′) ;x


in t[g 7→ g′] (2)

where α1, . . . , αq are an enumeration:
∏
j≤m App∗j = {α1, . . . , αq}; and the set App∗j , the function B]g , the two

formulas p and p′, and the variables z〈α
i〉 are defined below.

Before the formal definition of the predicates p and p′, we explain their semantical meaning. By (−)
]3 and (−)

]4 ,
each variable in an input program is unchanged (i.e., (x)

]3 def
= x and (x)

]4 def
= x), although by (−)

]3 , each subterm
of a function type (i.e., fix(f, λx. t) and f in fix(f, λx. t)) is duplicated, and by (−)

]4 , each subterm of a tuple type
(i.e., (t1, . . . , tn, t

′
1, . . . , t

′
m)) is transformed to the product of the functions, where the product of functions t and t′

means λ(x, x′). (t x, t x′). Hence, a verifier cannot necessarily infer that function variables behave as the product of
duplicated functions, while they in fact behave so since they are instantiated with some subterms of the input program.
The assumed predicates p and p′ state just that all the function variables behave as the product of duplicated functions
(p and p′ correspond to “product of functions” and “duplication”, respectively).

Now let us return to the definition, which consists of the following five steps.

1. Let z be z′ if (g = pr→k z
′) ∈ B for some (unique) k and z′, or be g otherwise.

Note that the types of variables such as g and z might become different after the encoding (−)
]′ . Before

21

t ::= (x1, . . . , xm) | if x then t1 else t2 | let x = e in t
e ::= n | op(x1, . . . , xn) | fix(f, λ(x1, . . . , xn). t) | f (x1, . . . , xn) | (x1, . . . , xn) | prix | fail

Figure 12: Normal form before (−)]
′
34

(t)
]′34
T

def
= (t)

]′34
T,∅

((x1, ..., xn, f1, ..., fm))
]′34
T,B

def
= (x1, ..., xn, λ(y1, ..., ym). (f1 y1, ..., fm ym))

(if x then t1 else t2)
]′34
T,B

def
= if x then (t1)

]′34
T,B else (t2)

]′34
T,B

(let x = e in t)
]′34
T,B

def
= let x = (e)

]′34
T,B in (t)

]′34
T,B

if e = n, op(x̃), fix(f, λ(x̃, g̃). t′), (x̃, f̃), or fail

(let x = e in t)
]′34
T,B

def
= let x = (e)

]′34
T,B in (t)

]′34
T,B∪{x=e}

if e = f (x̃, g̃), or prix

(e)
]′34
T,B

def
= e if e = n, op(x̃), or fail

(fix(f, λ(x1, . . . , xn, g1, . . . , gm). t′))
]′34
T,B

def
= fix(f, λ(z1, . . . , z`). (t

′
1, . . . , t

′
`))

where ` def
= T (fix(f, λ(x1, . . . , xn, g1, . . . , gm). t′))

t′k
def
= (t′)

]′34
T,B [xi 7→prizk]i≤n[gj 7→ pzkj]j≤m

pzkj
def
= λyj .prj((prn+1zk)(

−→
⊥
j−1

, yj ,
−→
⊥
m−j

))

(f(x1, ..., xn, g1, ..., gm))
]′34
T,B

def
= InstVar(f, T,B, tm+1)

where z def
= (x1, ..., xn, λỹj . (g1 y1, ..., gm ym))

t1
def
= pr1(f(−→z T (f)

))

tj+1
def
= InstVar(gj , T, B, tj) (for j = 1, ...,m)

((x1, ..., xn, f1, ..., fm))
]′34
T,B

def
= (x1, ..., xn, λ(y1, ..., ym). (f1 y1, ..., fm ym))(

print
i x

)]′34
T,B

def
= pri x(

pr→j x
)]′34
T,B

def
= λy.prj((prn+1x)(

−→
⊥
j−1

, yj ,
−→
⊥
m−j

))

where n and m are the numbers of the integer components and the function type components in the simple
type of x, respectively.

Figure 13: Refined encoding function refinement (−)]
′
34

22

applying (−)
]′ , the simple type of z is of the following form:

intn ×
m∏
j=1

(
τj → τ ′j

)
and hence the type of g is of the form τk → τ ′k; in the case z = g, we regard n = 0 and k = m = 1. After
(−)

]′ , (z)
]′

(= z) has the following simple type:

intn ×

(
m∏
j=1

(
(τj)

]′

T

)mj → m∏
j=1

((
τ ′j
)]′
T

)(mj)
[·7→·]

)
(3)

where mj is the multiplicity of pr→j z, and we access to the second component (function part) by pr]→. Also,

after (−)
]′ , the type of g becomes

(
(τk)

]′

T

)mk → (
(τ ′k)

]′

T

)mk (because of the consistency of T , we can show

that T (g) = mk). Hence, the type of ỹ = (yl)l≤mk is
(

(τk)
]′

T

)mk . Note that variables introduced when defining

(−)
]′ , such as yl, have no “types before (−)

]′”.

2. For each j = 1, . . . ,m, we define

App′j
def
=
{

(u, v, w) | (v = pr→j z), (w = v u) ∈ B, depth(v) = 1
}

and then define “application information” of z at j:

Appj
def
=


App′j ∪ {y1, . . . , ymk}
App′j
{(⊥, v) | (v = pr→j z) ∈ B}

(if j = k and depth(g) = 1)
(otherwise, if App′j is non-empty)

(otherwise)

where y is the bound variable in (2).

Let Term be the set of all terms. We define “argument part” as

argj : Appj → Term
def
=


(u, v, w) 7→ u

yl 7→ yl

(⊥, v) 7→ ⊥

and “function part” as

funj : Appj → Term
def
=


(u, v, w) 7→ v

yl 7→ g

(⊥, v) 7→ v.

3. We further add the information of multiplicity mj for the notions thus defined:

App∗j
def
=
{

(ai)i≤mj ∈ Appj
mj | funj(ai) = funj(a1)

}
arg∗j : App∗j → Termmj , arg∗j ((ai)i)

def
= (argj(ai))i

fun∗j : App∗j → Term, fun∗j ((ai)i)
def
= funj(a1).

4. We define “(−)
] of z”, which is specialized to the “application information” collected so far from B.

B]g :
∏
j≤m App∗j → Term

B]g((αj)j)
def
= (pr]→z)(arg

∗
1α1, . . . , arg

∗
mαm) .

23

5. Finally, we define p and p′ in (2) as

p
def
= &

(αj)j ,(α
′
j)j∈

∏
j≤m App∗j ,

j≤m, fun∗j (αj)=fun∗j (α
′
j)

(
arg∗j (αj) == arg∗j (α

′
j) => prjz

〈((αj)j)〉 == prjz
〈((α′j)j)〉

)

p′
def
= &

(αj)j∈
∏

j≤m App∗j ,

j≤m, i≤mj , πiαj=(u,v,w)

(
w == priprjz

〈((αj)j)〉
)

where we prepare a fresh variable z〈(αj)j〉 for each (αj)j ∈
∏
j≤m App∗j .

In the target language, fail is treated as an exception, and we define assume (t) as a shorthand for:

if (try t with fail→ false) then true else loop().

Note that our backend model checker MoCHi [9, 13] supports exceptions.
After replacing (−)

] with (−)
]′ , Theorem 1 is still valid; we give the proof in Appendix D.

Theorem 4 (Soundness of Verification by (−)
]′). Let t be a closed term and τ be a type of order at most 2. Let T be

a multiplicity annotation for ((t)]1)]2 and φ be a multiplicity type for ((τ)]1)]2 , and suppose that they are consistent
and τ ≤mul φ. Then,

|= (t)
]′

T : (τ)
]
φ implies |= t : τ .

4.4. Example: Verification of “append-xs-nil”
In this subsection, we show that how our method works for the program “append-xs-nil”. The whole program is

shown below:

let rec make_list n =
if n < 0 then []

else Random.int 10 :: make_list (n-1)
let rec append xs ys =

match xs with
[] -> ys

| x::xs’ -> x :: append xs’ ys
let main n i =

let xs = make_list n in
let rs = append xs [] in
assert (List.nth rs i = List.nth xs i)

The goal is to verify that the main function has type int→ int→ unit, which means that the assertion never fails.
Only the program above is given to the verifier, without any annotations.

The verifier first encodes lists as functions. We use notations for lists and functions interchangeably below. The
verifier next guesses a multiplicity annotation T by a heuristics. For this program, the verifier guesses that all the
multiplicities are 1.

Then, the transformation (−)
]1 is applied to the program, and the following program is obtained.

let rec make_list n =
if n < 0 then []

else Random.int 10 :: make_list (n-1)
let rec append xs ys =

match xs with [] -> [],ys,ys
| x::xs’ ->

let xs’’,ys’,rs = append xs’ ys in
x::xs’’, ys’, x::rs

24

let main n i =
let xs = make_list n in
let xs’,ys’,rs = append xs [] in
assert (List.nth rs i = List.nth xs’ i)

The new append returns copies of its arguments xs and ys, and xs’, the copy of xs, is used in the assertion instead
of xs.

The transformations (−)
]2 and (−)

]3 have no effect in this case. By applying the transformation (−)
]4 , the

following program is obtained:

let rec make_list n =
if n < 0 then []

else Random.int 10 :: make_list (n-1)
let rec append xs ys (i,j,k) =

match xs with
[] -> let r1,r2,r3 = None, ys j, ys k in

assume (j=k => r2=r3); r1, r2, r3
| x::xs’ -> let xs’’ys’rs = append xs’ ys in

if i = 0 & k = 0 then
let _,r2,_ = xs’’ys’rs(None,j,None) in
x, r2, x

else if i = 0 & k <> 0 then
let _,r2,r3 = xs’’ys’rs(None,j,k-1) in
x, r2, r3

else if k = 0 then
let r1,r2,_ = xs’’ys’rs(i-1,j,None) in
r1, r2, x

else
xs’’ys’rs(i-1,j,k-1)

let main n i =
let xs = make_list n in
let xs’_nil_rs = append xs [] in
let xs’rs (i,j) = let r1,r2,r3 = xs’_nil_rs (i, None, j) in r1, r3 in
let r1,r2 = xs’rs (i,i) in
assert (r2 = r1)

Here, we omit some constructors and pattern-matchings of option types.
The existing model checker MoCHi infers that the transformed append has the following first-order refinement

type:

(int→ int)→
((j : int)→{y : int | j = 0 => y = None})→(
(i, j, k) : int3

)
→
{

(r1, r2, r3) : int3
∣∣ i = j ⇒ r1 = r2

}
From the result of MoCHi, the verifier reports that the original program is safe.

5. Implementation and Experiments

We have implemented a prototype, automated verifier for higher-order functional programs as an extension to a
software model checker MoCHi [9, 13] for a subset of OCaml.

25

Table 1: Results of experiments

time [sec]
program size (before]′) size (after]′) predicates transformation model checking
sum-acc 56 282 0 < 0.01 0.54
sum-simpl 40 270 0 < 0.01 0.75
sum-mono 27 279 0 < 0.01 0.45
mult-acc 63 347 0 < 0.01 0.38
a-max-gen 112 476 1 < 0.01 0.29
append-xs-nil 72 1364 0 < 0.01 45.57
append-nil-xs 63 725 0 < 0.01 16.43
rev 128 1868 0 < 0.01 176.24
insert 32 6262 0 < 0.01 52.49
insertsort 38 7044 2 < 0.01 14.33

Table 1 shows the results of the experiments. The columns “size” show the size of the programs before and after
the transformations described in Section 4, where the size is measured by word counts.8 The column “predicates”
shows the number of predicates manually given as hints for the backend model checker MoCHi. The experiment
was conducted on Intel Core i7-3930K CPU and 16 GB memory. The implementation and benchmark programs are
available at http://www-kb.is.s.u-tokyo.ac.jp/˜ryosuke/mochi_rel/.

The programs used in the experiments are as follows. The programs “sum-acc”, “sum-simpl”, and “append-xs-nil”
are those given in Section 1. The program “mult-acc” is similar to “sum-acc” but calculates the multiplication. The
program “sum-mono” asserts that the function sum is monotonic, i.e., ∀m,n. m ≤ n ⇒ sum(m) ≤ sum(n). The
program “a-max-gen” finds the max of a functional array; the checked specification is that “a-max-gen” returns an
upper bound. Here is the main part of the code of “a-max-gen”.

let rec array_max i n array =
if i >= n then 0 else
let x = array i in
let m’ = array_max (i+1) n array in

if x > m’ then x else m’
let main i n =

let array = make_array n in
let m = array_max 0 n array in

if i < n then assert (array i <= m)

The program “append-nil-xs” asserts that append nil xs = xs. The program “rev” asserts that two list reversal
functions are the same, the one uses snoc function and the other one uses an accumulation parameter. The program
“insertsort” sorts an input list by the standard insertion sort algorithm, and the program “insert” is the insertion
function utilized in the insertion sort. Note that, for all the programs, invariant annotations were not supplied, except
the specification being checked. For example, for “a-max-gen” above, the specification is that the main has type
int→ int→ unit, which just means that the assertion assert (array i <= m) never fails; no type declaration
for array max was supplied. For the “append-xs-nil”, the verifier checks that append has the type

xs: τ→ ({ys: τ | ys(0) = None})→{rs: τ | ∀i.xs(i) = rs(i)}

where τ def
= int→ (int option). For the programs “insert” and “insertsort”, the verifier checks that

insert : int→ sortedlist→sortedlist

insertsort : int→ int list→sortedlist

8Because the transformation is automatic, we consider the number of words is a more appropriate measure (at least for the output of the
transformation) than the number of lines.

26

where
sortedlist

def
= {xs: int→ (int option) | ∀i, j. xs(i) ≤ xs(j)}.

In the table, one may notice that the program size is significantly increased by the transformation. This has been
mainly caused by the tupling transformation for recursive functions. Since the size increase incurs a burden for the
backend model checker, we plan to refine the transformation to suppress the size increase. Most of the time for
verification has been spent by the backend model checker, not the transformation.

The programs above have been verified fully automatically except for “a-max-gen” and “insort-sort”, for which
we had to provide predicates by hand as hints (for predicate abstraction) for the underlying model checker MoCHi.
This is a limitation of the current implementation of MoCHi, rather than that of our approach.

We have not been able to experiment with larger programs due to the limitation of MoCHi. We expect that with a
further improvement of automated refinement type checkers, our verifier works for larger and more complex programs.
Despite the limitation of the size of the experiments, we are not aware of any other verification tools that can verify
all the above programs with the same degree of automation.

6. Related Work

Knowles and Flanagan [6, 7] gave a general refinement type system where refinement predicates can refer to
functions. Their verification method is however a combination of static and dynamic checking, which delegates type
constraints that could not be statically discharged to dynamic checking. The dynamic checking will miss potential
bugs, depending on given arguments. On the other hand, our method is static and fully automatic.

Some of the recent work on (semi-)automated9 refinement type checking [12, 23] supports the use of uninterpreted
function symbols in refinement predicates. Uninterpreted functions can be used only for total functions. Furthermore,
their method cannot be used to prove relational properties like the ones given in Section 1, since their method cannot
refer to the definitions of the uninterpreted functions.

Unno et al. [18] have proposed another approach to increase the power of automated verification based on first-
order refinement types. To overcome the limitation that refinement predicates cannot refer to functions, they added
an extra integer parameter for each higher-order argument so that the extra parameter captures the behavior of the
higher-order argument, and the dependency between the higher-order argument and the return value can be captured
indirectly through the extra parameter. They have shown that the resulting first-order refinement type system is in
theory relatively complete (in the same sense as Hoare logic is). With such an approach, however, a complex encoding
of the information about a higher-order argument (essentially Gödel encoding) into the extra parameter would be
required to properly reason about dependencies between functions, hence in practice (where only theorem provers for
a restricted logic such as Presburger arithmetic is available), the verification of relational properties often fails. In fact,
none of the examples used in the experiments of Section 5 (with encoding into the reachability verification problem
considered in [18]) can be verified with their approach.

Suter et al. [14, 15] proposed a method for verifying correctness of first-order functional programs that manipulate
recursive data structures. Their method is similar to our method in the sense that recursive functions can be used in a
program specification. For example, the example programs “sum-simpl” and “append-nil-xs” can be verified by their
method (if lists are not encoded as functions). Their method however can deal only with specifications which does
not include partial functions. For this reason, if we rewrite the definition of sum as:

let rec sum n = if n=0 then 0 else n+sum(n-1)

their method cannot verify “sum-simpl” correctly, while our method can.
There are less automated approaches to refinement type checking, where programmers supply invariant annota-

tions (in the form of refinement types) for all recursive functions [2, 1], and then verification conditions are generated
and discharged by SMT solvers. Xu’s method [22, 21] for contract checking also requires that contracts must be de-
clared for all recursive functions. In contrast, in our method, a refinement type is used only for specifying the property
to be verified, and no declaration is required for auxiliary functions.

9Not fully automated in the sense that a user must supply hints on predicates.

27

There are several studies of interactive theorem provers (Coq, Agda, etc.) that can deal with general refinement
types. These systems aim to support the verification, not to verify automatically. Therefore, one must give a complete
proof of the correctness by hand. Moreover, these systems cannot deal directly with non-terminating programs and
the proof of the termination is also required.

7. Conclusion and Future Work

We have proposed an automated method for verification of relational properties of functional programs, by reduc-
tion to the first-order refinement type checking. We have confirmed the effectiveness of the method using a prototype
implementation.

Future work includes a proof of the relative completeness of our verification method (with respect to a general
refinement type system) and an extension of the method to deal with more expressive refinement types. For example,
as described in Section 2, we allow only top-level quantifiers over the base type and first-order function variables
in refinement predicates. Relaxing this limitation is left for future work. Also, our current implementation should
be improved further. First, as shown in Section 5, the verifier may increase the code size significantly. We need to
suppress the increase by some optimizations of the transformation for improving the scalability. Secondly, producing
a better report of the verification result is also left for future work; currently, the verifier just outputs “No” when a
program does not satisfy a given specification.

Acknowledgment
We would like to thank Naohiko Hoshino and anonymous referees for useful comments. This work was supported

by Kakenhi 23220001 and 15H05706.
[1] G. Barthe, C. Fournet, B. Grégoire, P.-Y. Strub, N. Swamy, and S. Zanella-Béguelin. Probabilistic relational verification for cryptographic

implementations. In POPL ’14, volume 49, pages 193–205, 2014.
[2] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for secure implementations. TOPLAS, 33(2):

8:1–8:45, Jan. 2011.
[3] W.-N. Chin. Towards an automated tupling strategy. In PEPM ’93, pages 119–132, 1993.
[4] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-

07143-6.
[5] K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation. Theor. Comput. Sci., 221(1-2):393–456, June 1999.
[6] K. Knowles and C. Flanagan. Type reconstruction for general refinement types. In ESOP ’07, pages 505–519, 2007.
[7] K. L. Knowles and C. Flanagan. Hybrid type checking. TOPLAS, 32(2), Jan. 2010. ISSN 0304-3975.
[8] N. Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1–20:62, 2013.
[9] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for higher-order model checking. In PLDI ’11, pages 222–233, 2011.

[10] E. Moggi. Computational lambda-calculus and monads. In LICS ’89, pages 14–23, 1989.
[11] C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional programs with pattern-matching algebraic data types. In POPL ’11, pages

587–598, 2011.
[12] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI ’08, pages 159–169, 2008.
[13] R. Sato, H. Unno, and N. Kobayashi. Towards a scalable software model checker for higher-order programs. In PEPM ’13, pages 53–62,

2013.
[14] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with abstractions. In POPL ’10, pages 199–210, 2010.
[15] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs. In SAS ’11, pages 298–315, 2011.
[16] T. Terauchi. Dependent types from counterexamples. In POPL ’10, pages 119–130, 2010.
[17] H. Unno and N. Kobayashi. Dependent type inference with interpolants. In PPDP ’09, pages 277–288, 2009.
[18] H. Unno, T. Terauchi, and N. Kobayashi. Automating relatively complete verification of higher-order functional programs. In POPL ’13,

pages 75–86, 2013.
[19] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In ESOP ’13, pages 209–228, 2013.
[20] H. Xi and F. Pfenning. Dependent types in practical programming. In POPL ’99, pages 214–227, 1999.
[21] D. N. Xu. Hybrid contract checking via symbolic simplification. In PEPM ’12, pages 107–116, 2012.
[22] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking for Haskell. In Workshop on Haskell, pages 41–52, 2009.
[23] H. Zhu and S. Jagannathan. Compositional and lightweight dependent type inference for ML. In VMCAI ’13, pages 295–314, 2013.

Appendix A. A Simple Type System

This section gives the simple type system mentioned in Section 2. The syntax of simple types is given by:

κ (simple types) ::= int | κ1→ κ2 |
∏n
i=1 κi

A simple type environment Γ is a set of type bindings of the form x : κ. The typing rules are given in Figure A.14.

28

Γ(x) = κ

Γ `ST x : κ
(ST-VAR)

Γ `ST n : int
(ST-CONST)

Γ `ST t : int Γ `ST t1 : κ Γ `ST t2 : κ

Γ `ST if t then t1 else t2 : κ
(ST-IF)

The arity of [[op]] is n Γ `ST ti : int for all i ≤ n
Γ `ST op(t1, . . . , tn) : int

(ST-OP)

Γ, f : κ1→ κ2, x1 : κ1 `ST t : κ2

Γ `ST fix(f, λx1. t) : κ1→ κ2
(ST-FIX)

Γ `ST t : κ1→ κ2 Γ `ST t1 : κ1

Γ `ST t t1 : κ2
(ST-APP)

Γ `ST ti : κi for all i ≤ n
Γ `ST (t1, . . . , tn) :

∏n
i=1 κi

(ST-TUPLE)

Γ `ST t :
∏n
i=1 κi

Γ `ST prit : κi
(ST-PROJ)

Γ `ST fail : κ
(ST-FAIL)

Figure A.14: Typing rules

29

Appendix B. A Refinement Type System

This section gives a sound type system for proving |= t : τ . Here we do not assume the restrictions in Section 2.3.
We obtain also first-order refinement type system by restricting the type system so that function variables are disal-
lowed to occur in predicates in all the refinement types. Various automatic verification methods [12, 17, 16, 9, 19, 13]
are available for the first-order refinement types.

The type judgment used in the type system is of the form Γ `Lt t : τ , where Γ, called a type environment, is a
sequence of type bindings of the form x : τ , and L is (the name of) the underlying logic for deciding the validity
of predicates, which we keep abstract through the paper. Below, we use general well-formedness `GWF (defined in
Section 2.1), which represents usual scope rules of dependent types.

We define value environments as mappings from variables to closed values and use a meta variable η for them.
For a value environment η and an environment Γ such that `GWF Γ, we define η |=e Γ as follows:

∅ |=e ∅
def⇐⇒ true

η ∪ {x 7→ V } |=e Γ, x : τ
def⇐⇒ η |=e Γ and |=v V : τ [η]

The type judgment Γ `Lt t : τ semantically means that for any η if η |=e Γ then |=v t[η] : τ [η].
The general refinement type system is given in Figures B.15 and B.16. The judgment Γ | P `L P ′ means that, in

L, P implies P ′ under the type environment Γ. We assume that the logic L satisfies the following condition:

for any Γ, P , and P ′, if Γ | P `L P ′,
then for any η such that η |=e Γ, |=pP [η] implies |=pP

′[η].
(B.1)

In Figure B.15, we define t′([x← t]) as let x = t in t′, and extend it to the operations P ([x← t]) and σ([x← t]) com-
positionally. For example, (∀y.t1 ∧ t2)([x← t]) = ∀y.(t1([x← t]))∧ (t2([x← t])). We define t([x1← t1, . . . , xn← tn])
as ((t([xn← tn])) · · ·)([x1← t1]).

The typing rules are similar to those of Knowles and Flanagan [6]. We discuss some key rules. In the rule T-APP,
intuitively, y is assumed to have the type obtained by replacing formal arguments in the type of the return value of x
with actual arguments. The rule T-SUB is for subsumption. For example, Γ ` 42 : {ν : int | ν ≥ 0} is obtained by
the following derivation.

Γ ` 42 : {ν : int | ν = 42} Γ ` {ν : int | ν = 42} <: {ν : int | ν ≥ 0}
Γ ` 42 : {ν : int | ν ≥ 0}

In the rule T-FAIL, fail is typable only if a contradiction occurs in the type environment.
We now show a typing of the running example introduced in Section 1. Here, as the underlying logic L, we use

linear integer arithmetic with beta equality. We can show that sum has type

{f : int→ int | ∀x. x ≥ 0 => f x = x+ f (x− 1)}

by the following derivation

...

... ν : int→ int | true `L P ([f← t])

`Ls int→ int <: {f : int→ int | P ([f← t])}
SUB-REFINE

` t : {f : int→ int | P ([f← t])} T-SUB

` t : {f : int→ int | P} T-SUBST

where t = fix(sum, λx. if x < 0 then 0 else x+ sum (x− 1)) and P = ∀x. x ≥ 0 => f x = x+ f (x− 1). Since
in L

P ([f← t]) ⇐⇒ ∀x. x ≥ 0 => t x = x+ t (x− 1)

⇐⇒ ∀x. x ≥ 0 => x+ t (x− 1) = x+ t (x− 1)

and x+ t (x− 1) = x+ t (x− 1) is valid in L, P ([f← t]) is valid in L.
The type system is sound with respect to the semantics of types:

30

Γ(x) = τ Γ `GWF τ
Γ `Lt x : τ

(T-VAR)

Γ `Lt n : int
(T-CONST)

Γ `Lt t : {ν : int | P} (x /∈ FV (t1) ∪ FV (t2))
Γ, x : {ν : int | P ∧ ν = true} `Lt t1 : τ Γ, x : {ν : int | P ∧ ν 6= true} `Lt t2 : τ

Γ `Lt if t then t1 else t2 : τ([x← t])
(T-IF)

The arity of [[op]] is n Γ `Lt ti : int for all i ≤ n
Γ `Lt op(t1, . . . , tn) : int

(T-OP)

Γ, f : (x1: τ1)→ τ2, x1 : τ1 `Lt t : τ2 (f /∈FV (τ1)∪FV (τ2))

Γ `Lt fix(f, λx1. t) : (x1: τ1)→ τ2
(T-FIX)

Γ `Lt t : {ν : (x1: τ1)→ τ2 | P} Γ `Lt t1 : τ1

Γ `Lt tt1 : τ2([x1← t1])
(T-APP)

Γ `Lt ti : ρi([x1← t1, . . . , xi−1← ti−1]) for all i ≤ n
Γ `Lt (t1, . . . , tn) :

∏n
i=1 (xi: ρi)

(T-TUPLE)

Γ `Lt t : {ν :
∏n
i=1 (xi: ρi) | P} ρi = {νi : σi | Pi}

Γ `Lt prit : {νi : σi | Pi} ([x1←pr1t, . . . , xi−1←pri−1t])
(T-PROJ)

Γ, x : {ν : σ | false} `Lt fail : τ
(T-FAIL)

`Les Γ′ <: Γ Γ `Lt t : τ Γ′ `Ls τ <: τ ′

Γ′ `Lt t : τ ′
(T-SUB)

Γ `Lt t : {ν : σ | P ([ν← t])}
Γ `Lt t : {ν : σ | P}

(T-SUBST)

Γ `Lt t : {ν : σ | P} Γ `Lt t : {ν : σ | P ′}
Γ `Lt t : {ν : σ | P ∧ P ′}

(T-CONJ)

Figure B.15: Typing rules

31

Γ `Ls σ <: σ′ Γ, ν : σ | P `L P ′

Γ `Ls {ν : σ | P} <: {ν : σ′ | P ′}
(SUB-REFINE)

Γ `Ls int <: int
(SUB-INT) Γ `Ls τ ′1 <: τ1 Γ, x1 : τ ′1 `Ls τ2 <: τ ′2

Γ `Ls (x1 : τ1)→ τ2 <: (x1 : τ ′1)→ τ ′2
(SUB-FUN)

Γ, x1 : ρ1, . . . , xi−1 : ρi−1 `Ls ρi <: ρ′i for all i ≤ n
Γ `Ls

∏n
i=1 (xi: ρi) <:

∏n
i=1 (xi: ρ

′
i)

(SUB-TUPLE)

`Les ∅ <: ∅
(ENVSUB-NIL) `Les Γ <: Γ′ Γ `Ls τ <: τ ′

`Les Γ, x : τ <: Γ′, x : τ ′
(ENVSUB-CONS)

Figure B.16: Subtyping rules

Theorem 5 (Soundness of Type System). For any L, if `Lt t : τ , then |= t : τ .

The rest of this section is devoted to the proof of this theorem. We generalize the semantics of types with environ-
ments as below

Γ |= t : τ
def⇐⇒ |= t[η] : τ [η] for any η such that η |=e Γ

and we show Theorem 5 as a corollary of the following lemma:

Lemma 6. For any L, if Γ `Lt t : τ , then Γ |= t : τ .

Before proving Lemma 6, we show three lemmas.

Lemma 7 (Soundness of Subtyping). For any L, if Γ `Ls τ <: τ ′, then for any η such that η |=e Γ and for any V ,

|=v V : τ [η] implies |=v V : τ ′[η].

Also, if `Les Γ <: Γ′, then for any η,

η |=e Γ implies η |=e Γ′.

Proof. We prove this lemma by induction on the derivations of Γ `Ls τ <: τ ′ and `Les Γ <: Γ′. All the cases are
straightforward; we explain only two cases.
(SUB-REFINE) Immediate from the induction hypothesis and the assumption (B.1) on L.
(SUB-FUN) Suppose the induction hypotheses:

(i) for any η such that η |=e Γ and for any V1, if |=v V1 : τ ′1[η] then |=v V1 : τ1[η],

(ii) for any η′ such that η′ |=e (Γ, x1 : τ ′1) and for any V2, if |=v V2 : τ2[η′] then |=v V2 : τ ′2[η′].

For given η such that η |=e Γ and for given V , let us assume |=v V : ((x1: τ1)→ τ2)[η], i.e.,

(iii) for any V1 such that |=v V1 : τ1[η] and any A2 such that V V1 −→∗ A2, we have |=v A2 : τ2[η][x1 7→V1].

Then, we show that |=v V : ((x1: τ ′1)→ τ ′2)[η], i.e., for given V1 such that |=v V1 : τ ′1[η] and given A2 such that
V V1 −→∗ A2, we show |=v A2 : τ ′2[η][x1 7→V1].

Since η |=e Γ and |=v V1 : τ ′1[η], by (i), we have |=v V1 : τ1[η]. Hence, since V V1 −→∗ A2 and by (iii),

|=v A2 : τ2[η][x1 7→V1]. (B.2)

Let η′ := η ∪ {x1 7→ V1}. Since η |=e Γ and |=v V1 : τ ′1[η], we have η′ |=e (Γ, x1 : τ ′1). By (B.2), A2 is a value and
|=v A2 : τ2[η′]; hence, by (ii), |=v A2 : τ ′2[η′], i.e., |=v A2 : τ ′2[η][x1 7→V1].

32

Lemma 8. For any P , t0, and t1 such that t0 −→ t1,

|=p P ([x← t0]) iff |=p P ([x← t1]).

For any τ , t0, t1, and V such that t0 −→ t1,

|=v V : τ([x← t0]) iff |=v V : τ([x← t1]).

Proof. The proof is trivial by the inductions on the syntax of P and τ .

To prove Lemma 6, we use so-called unwinding theorem [4], which we now explain. First, for n ≥ 0, we define
“approximations” of fix:

fix(0)(f, λx. t)
def
= λx.Ω

fix(n+1)(f, λx. t)
def
= λx. t[f 7→fix(n)(f, λx. t)].

Also, we use the usual notion of a context:

C ::= [] | op(t̃, C, t̃) | if C then t1 else t2 | if t then C else t2 | if t then t1 else C

| fix(f, λx.C) | C t2 | t1 C | (t̃, C, t̃) | priC

Lemma 9 (Unwinding Theorem). For a context C and a term fix(f, λx. t) such that C[fix(f, λx. t)] is closed, and
for an answer A which is an integer or fail , if C[fix(f, λx. t)] −→∗ A, then for some n, C[fix(n)(f, λx. t)] −→∗ A.

Proof. Obvious from the adequacy of the standard (Scott’s) CPO-semantics (with an exception fail), the continuity of
C, the compactness of integers and fail , and the fact that fix(f, λx. t) is the limit of (fix(n)(f, λx. t))n. (The usage
of these properties is the same as that in the proof of Lemma 17.)

Proof of Lemma 6. We prove this lemma by induction on the derivations of Γ `Lt t : τ . An important case is (T-FIX),
where we use the unwinding theorem. The other cases are straightforward except that we use Lemmas 8 and 7 there.
(T-VAR) Trivial.
(T-CONST) Trivial.
(T-IF) Suppose the induction hypotheses:

(i) for any η and V ,

if η ∪ {x 7→ V } |=e (Γ, x : {ν : int | P ∧ ν = true})
then |= t1[η][x 7→V] : τ [η][x 7→V],

(ii) for any η and V ,

if η ∪ {x 7→ V } |=e (Γ, x : {ν : int | P ∧ ν 6= true})
then |= t2[η][x 7→V] : τ [η][x 7→V].

Then, for given η and V such that

η ∪ {x 7→ V } |=e (Γ, x : {ν : int | P}) (B.3)

we show
|= (if x then t1 else t2)[η][x 7→V] : τ [η][x 7→V].

From (B.3), |=v V : int, and hence V is an integer. We suppose V = true; in the case V 6= true the proof is
similar.

From (B.3) and since V = true, η and V satisfy the assumption of (i); hence,

|= t1[η][x 7→V] : τ [η][x 7→V].

33

While, since V = true,
(if x then t1 else t2)[η][x 7→V]

= if V then t1[η][x 7→V] else t2[η][x 7→V]

−→ t1[η][x 7→V].

Therefore,
|= (if x then t1 else t2)[η][x 7→V] : τ [η][x 7→V].

(T-OP) Trivial.
(T-FIX) Suppose the induction hypothesis on the typing derivation:

(i) for any η′ such that η′ |=e Γ, f : (x1: τ1)→ τ2, x1 : τ1, we have |= t2[η′] : τ2[η′],

and that f /∈ FV (τ1) ∪ FV (τ2). For given η such that η |=e Γ, we show

|=v fix(f, λx1. t2)[η] : ((x1: τ1)→ τ2)[η]. (B.4)

First, we show that, for any n ≥ 0,

|=v fix(n)(f, λx1. t2[η]) : (x1 : τ1[η])→ τ2[η] (B.5)

by induction on n. The base case (n = 0) is trivial.
For n ≥ 0, we show the case of n+ 1, i.e., for given V1 such that

|=v V1 : τ1[η] (B.6)

and given A2 such that
fix(n+1)(f, λx1. t2[η])V1 −→∗ A2

we show that
|=v A2 : τ2[η][x1 7→V1].

Let η′ def
= η ∪

{
f 7→ fix(n)(f, λx1. t2[η])

}
∪ {x1 7→ V1}; by the induction hypothesis of (B.5) on n, by (B.6),

and since f /∈ FV (τ1),
η′ |=e Γ, f : (x1: τ1)→ τ2, x1 : τ1.

Hence, by (i), and since f /∈ FV (τ2), we have

|= t2[η′] : τ2[η][x1 7→V1].

Therefore, since
fix(n+1)(f, λx1. t2[η])V1 −→

t2[η][f 7→fix(n)(f, λx1. t2[η])][x1 7→V1] = t2[η′] −→∗ A2

we have |=v A2 : τ2[η][x1 7→V1].
Now, we show (B.4), i.e., for given V1 such that

|=v V1 : τ1[η]

and given A2 such that
fix(f, λx1. t2[η])V1 −→∗ A2

we show that
|=v A2 : τ2[η1] (B.7)

where η1 def
= η ∪ {x1 7→ V1}.

34

If A2 = fail , by the unwinding theorem, for some n,

fix(n)(f, λx1. t2[η])V1 −→∗ A2.

This contradicts (B.5); hence A2 is a value.
The rest of the proof for (T-FIX) is basically similar to the above case that A2 = fail : we use the unwinding

theorem for a reduction sequence to fail or an integer, and use (B.5).
If τ2 is of the form

{
ν2 : int

∣∣ P 2
}

, then A2 is some integer; hence, by the unwinding theorem and (B.5), the
goal (B.7) follows.

Let τ2 be of the form
{
f2 :

(
x21: τ21

)
→ τ22

∣∣ P 2
}

. First, we show |=p P
2[η1][f2 7→A2]. Let P 2 be of the form

∀ỹ. ∧k P 2
k where P 2

k are integer terms. For given integers m̃, k, and A such that P 2
k [η1][f2 7→A2][ỹ 7→ m̃] −→∗ A,

we have to show A = true. Since

let f2 = fix(f, λx1. t2[η])V1 in P 2
k [η1][ỹ 7→ m̃] −→∗

P 2
k [η1][f2 7→A2][ỹ 7→ m̃] −→∗ A,

by the unwinding theorem, for some n

let f2 = fix(n)(f, λx1. t2[η])V1 in P 2
k [η1][ỹ 7→ m̃] −→∗ A.

Hence, by (B.5), we have A = true.
To show |=v A2 :

(
x21: τ21 [η1]

)
→ τ22 [η1], for given V 2

1 and given A2
2 such that

|=v V
2
1 : τ21 [η1] and A2 V

2
1 −→∗ A2

2,

we have to show that
|=v A

2
2 : τ22 [η2]

where η2 def
= η1 ∪

{
x21 7→ V 2

1

}
. Repeating the above, finally we reach a ground type: i.e., there is l such that

τ i2 =
{
f i+1 :

(
xi+1
1 : τ i+1

1

)
→ τ i+1

2

∣∣ P i+1
}

for i < l and

τ l2 =
{
νl+1 : int

∣∣ P l+1
}

;

and for given V i1 and Ai2 (i ≤ l) such that

|=v V
i
1 : τ i1[ηi−1] and Ai−12 V i1 −→∗ Ai2

where ηi def
= ηi−1 ∪

{
xi1 7→ V i1

}
for i ≤ l, we need to show that

|=v A
l
2 : τ l2[ηl]. (B.8)

Since
fix(f, λx1. t2[η])V1 V

2
1 . . . V

l
1 −→∗ Al2

and Al2 is a ground answer, by the unwinding theorem, for some n,

fix(n)(f, λx1. t2[η])V1 V
2
1 . . . V

l
1 −→∗ Al2,

and by (B.5), the goal (B.8) follows.
(T-APP) Suppose the induction hypotheses:

(i) for any η such that η |=e Γ and any A such that t[η] −→∗ A, |=v A : {ν : (x1: τ1)→ τ2 | P} [η],

(ii) for any η such that η |=e Γ and any A1 such that t1[η] −→∗ A1, |=v A1 : τ1[η].

35

Then, for given η such that η |=e Γ and given A2 such that (tt1)[η] −→∗ A2, we show

|=v A2 : τ2([x1← t1])[η]. (B.9)

Since (tt1)[η] = t[η]t1[η] −→∗ A2, there exists A such that t[η] −→∗ A, and by (i),

|=v A : {ν : (x1: τ1)→ τ2 | P} [η]. (B.10)

Thus, A is a value and A (t1[η]) −→∗ A2. Hence, there exists A1 such that

t1[η] −→∗ A1, (B.11)

and by (ii),
|=v A1 : τ1[η]. (B.12)

Especially, A1 is a value and
AA1 −→∗ A2. (B.13)

Now, by (B.10), |=v A : (x1: τ1[η])→ τ2[η]; and by (B.12) and (B.13),

|=v A2 : τ2[η][x1 7→A1].

Hence, by (B.11) and Lemma 8,
|=v A2 : τ2[η]([x1← t1[η]]).

Since τ2[η]([x1← t1[η]]) = τ2([x1← t1])[η], we have shown (B.9).
(T-TUPLE) (T-PROJ) Straightforward.

(T-FAIL) For given η and V such that

η ∪ {x 7→ V } |=e Γ, x : {ν : σ | false},

we show a contradiction instead of |= fail : τ [η][x 7→V].
By the assumption, |=v V : {ν : σ | false} [η] and hence |=p false, which is a contradiction.

(T-SUB) Trivial, from Lemma 7.
(T-SUBST) Trivial.
(T-CONJ) Trivial.

Appendix C. Proof of Soundness of Verification by (−)
]

Here we prove Theorem 1, the soundness of the verification by (−)
]. We prove the soundness by dividing it into

four parts corresponding to (−)
]1 , (−)

]2 , (−)
]3 , and (−)

]4 :

Proposition 10. Let i = 1, 2, or 4. Let t be a closed term and τ be a type of order at most 2. Then,

|= (t)]i : (τ)]i implies |= t : τ .

Proposition 11. Let t be a closed term and τ be a type of order at most 2. Let T and φ be a multiplicity annotation
and a multiplicity type for t and τ and suppose that they are consistent and τ ≤mul φ. Then,

|= (t)
]3
T : (τ)

]3
φ implies |= t : τ .

36

The soundness theorem is an immediate corollary of the above since each transformation preserves the property
that τ is order at most 2.

All the above propositions can be proved in a similar way. Among them, the case for (−)
]3 is the most subtle

since it uses multiplicity annotations, so we focus on this case, which is proved in Appendix C.3; see Appendix C.4
for (the key of) a proof of Proposition 10. As lemmas for proving Proposition 11, we show a substitution lemma
and a simulation lemma for (−)

]3 (Lemmas 12 and 14) in Appendix C.1 and two lemmas for obtaining multiplicity
annotations for values in argument position of logical relation (Lemmas 17 and 18) in Appendix C.2.

Below, when we write t = {. . .} t′, the expression “{. . .}” is an explanation for why the equation holds. We
define an observational preorder (denoted by ≤o) as usual: t ≤o t

′ if for any context C such that C[t] and C[t′] are
closed ground terms and for any A,

C[t] −→∗ A implies C[t′] −→∗ A.

We also define an observational equivalence =o as

t =o t
′ def⇐⇒ t ≤o t

′ ∧ t′ ≤o t.

Appendix C.1. Substitution Lemma and Simulation Lemma for (−)
]3

For the substitution lemma, we define a restriction of a type annotation. For a term t, we write S(t) for the set of
all the subterm occurrences of t. For a type annotation T for a term t and a subterm occurrence t′ of t, since there is a
natural embedding of S(t′) into S(t), we can define T |t′ as the restriction of the function T to S(t′). If T is consistent
for a multiplicity type φ, i.e., given a multiplicity type environment Φ and a derivation of Φ `c t : φ that induces T ,
its sub-derivation that corresponds to the subterm t′ induces exactly the type annotation T |t′ ; thus, the restriction of
consistent type annotation is consistent in a canonical way. In the definition of (t)

]3
T in Figure 7, restrictions of type

annotations are used implicitly (e.g., (t1 t2)
]3
T

def
=
(
pr1(t1)

]3
T |t1

)
(t2)

]3
T |t2

); below we make them explicit only in subtle
cases.

Lemma 12 (Substitution Lemma). If Φ, x′ : φ′ `c t : φ and Φ `c t′ : φ′ are derived, so is Φ `c t[x′ 7→ t′] : φ (in a
canonical way).

For derivations of Φ, x′ : φ′ `c t : φ and Φ `c t′ : φ′ with the induced type annotations T and T ′ for t
and t′, respectively, we define a multiplicity annotation T [T ′] of t[x′ 7→ t′] as that defined from the derivation of
Φ `c t[x′ 7→ t′] : φ. Then,

(t[x′ 7→ t′])
]3
T [T ′] = (t)

]3
T [x′ 7→ (t′)

]3
T ′] .

Proof. The former is straightforward by induction on derivations of Φ, x′:φ′ `c t : φ. We show only the case
t = fix(f, λx1. t2).

For given derivations below,

...
Φ, x′:φ′, f : {{φ1→ φ2 |M}}, x1:φ1 `c t2 : φ2

D

Φ, x′:φ′ `c fix(f, λx1. t2) : {{φ1→ φ2 |M}}

...
Φ `c t′ : φ′

D′

we have a derivation D of (. . . `c t2 : φ2). By induction hypothesis, we have a derivation IH(D,D′) of (. . . `c
t2[x′ 7→ t′] : φ2). Thus, we obtain the following derivation for fix(f, λx1. t2[x′ 7→ t′]) = fix(f, λx1. t2)[x′ 7→ t′].

...
Φ, f : {{φ1→ φ2 |M}}, x1:φ1 `c t2[x′ 7→ t′] : φ2

IH(D,D′)

Φ `c fix(f, λx1. t2[x′ 7→ t′]) : {{φ1→ φ2 |M}}

We prove the latter part by induction on t; again we show only the case t = fix(f, λx1. t2).

37

(t[x′ 7→ t′])
]3
T [T ′]

= (fix(f, λx1. t2)[x′ 7→ t′])
]3
T [T ′]

= (fix(f, λx1. t2[x′ 7→ t′]))
]3
T [T ′]

=
{

let m def
= T [T ′](fix(f, λx1. t2[x′ 7→ t′]))

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2[x′ 7→ t′])

]3
T [T ′]|t2[x′ 7→ t′]

[f 7→
−→
f
m

])
m

=
{

by IH and because T [T ′]|t2[x′ 7→ t′] = T |t2 [T ′] from the proof of the former
}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T |t2

[x′ 7→ (t′)
]3
T ′][f 7→

−→
f
m

])
m

=
−−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T |t2

[f 7→
−→
f
m

])
m

[x′ 7→ (t′)
]3
T ′]

= {because m = T (fix(f, λx1. t2)) from the proof of the former}

(fix(f, λx1. t2))
]3
T [T ′] [x′ 7→ (t′)

]3
T ′]

= (t)
]3
T [x′ 7→ (t′)

]3
T ′]

Toward the simulation lemma, we first show the following property:

Lemma 13 (Subject Reduction of Multiplicity Type System). If Φ `c t : φ and t −→ t′, then Φ `c t′ : φ.

Proof. Straightforward induction on the derivation of Φ `c t : φ; in the case t = fix(f, λx1. t2)V1, we use the former
part of Lemma 12.

Using the above, we define a multiplicity annotation for a reduced term. For a multiplicity annotation T of a closed
term t and a multiplicity type φ such that T and φ are consistent, suppose t −→ t′. By the definition of consistency,
we have a derivation of `c t : φ, and by the subject reduction, we have the derivation of `c t′ : φ. Thus we obtain a
multiplicity annotation T ′ of t′ that is consistent with φ; we write

T −→t,φ T
′ or simply T −→ T ′

to refer to this T ′.
We also remark the following fact: since in the above proof we used Lemma 12 for the application case, it can

also be shown that, for a consistent pair (T, φ) for fix(f, λx1. t2)V1,

T −→ T |t2 [T |V1][T |fix(f,λx1. t2)]. (C.1)

Now, we give a “coarse-grained” simulation lemma, which is a corollary of a “fine-grained” simulation lemma
below (Lemma 16). We use the next lemma in the proof of Proposition 11; a busy reader can skip the rest of this
subsection.

Lemma 14. For a multiplicity annotation T of a term t, and a multiplicity type φ such that T and φ are consistent,

• if t −→n V (with T −→n T ′) for some n, then (t)
]3
T −→∗ (V)

]3
T ′ and (V)

]3
T ′ is a value,

• if t −→∗ fail , then (t)
]3
T −→∗ fail ,

• if t ↑ , then (t)
]3
T ↑ .

38

([])
]e3
T

def
= []

(op(Ṽ , E, t̃))
]e3
T

def
= op((̃V)

]3
T , (E)

]e3
T , (̃t)

]3
T)

(if E then t1 else t2)
]e3
T

def
= if (E)

]e3
T then (t1)

]3
T else (t2)

]3
T

(E t)
]e3
T

def
=
(
pr1(E)

]e3
T

)
(t)

]3
T

(fix(f, λx1. t2)E)
]e3
T

def
= fix(f, λx1. (t2)

]3
T [f 7→

−→
f
m

]) (E)
]e3
T

(where m = T (fix(f, λx1. t2)))

((Ṽ , E, t̃))
]e3
T

def
= ((̃V)

]3
T , (E)

]e3
T , (̃t)

]3
T)

(priE)
]e3
T

def
= pri(E)

]e3
T

Figure C.17: (−)]e3 : modified (−)]3 for evaluation contexts

s([])
def
= 0

s(op(Ṽ , E, t̃))
def
= s(E)

s(if E then t1 else t2)
def
= s(E)

s(E t)
def
= s(E)

s(V E)
def
= s(E) + 1

s((Ṽ , E, t̃))
def
= s(E)

s(priE)
def
= s(E)

Figure C.18: Step numbers of evaluation contexts

For Lemma 16, we still prepare some definitions and a lemma. In evaluation contexts, [] does not occur in the
scope of any variable binder. Hence, we can regard [] as a variable and evaluation contexts as terms, and we derive
notions for evaluation contexts from those for terms.

For an evaluation context E, (E)
]3
T is not an evaluation context (only) when E = V E′. We modify this gap; for

evaluation contexts E, we define (E)
]e3
T in Figure C.17 and the step numbers s(E) in Figure C.18. Notice that, in both

the definitions, we give special treatment to the case of V E.

Lemma 15. (1) For any value V , (V)
]3
T is a value.

(2) For any evaluation context E and a multiplicity annotation T of E, (E)
]e3
T is an evaluation context.

(3) For any evaluation context E, a multiplicity annotation T of E, and any term t such that E[t] is closed,

(E)
]3
T [[] 7→ t] −→s(E) (E)

]e3
T [t] .

Proof. (1) Clear by induction on values V .
(2) Clear by induction on evaluation contexts E.
(3) Straightforward by induction on evaluation contexts E and by 1; we show only the key case of V E i.e.

39

fix(f, λx1. t2)E.

(fix(f, λx1. t2)E)
]3
T [[] 7→ t]

=
(
pr1 (fix(f, λx1. t2))

]3
T

)(
(E)

]3
T [[] 7→ t]

)
=
(
pr1

−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T [f 7→

−→
f
m

])
m)(

(E)
]3
T [[] 7→ t]

)
−→ fix(f, λx1. (t2)

]3
T [f 7→

−→
f
m

])
(

(E)
]3
T [[] 7→ t]

)
−→s(E) fix(f, λx1. (t2)

]3
T [f 7→

−→
f
m

])
(
(E)

]e3
T [t]

)
= (fix(f, λx1. t2)E)

]3
T [t]

Lemma 16 (Simulation Lemma for (−)
]3). For a multiplicity annotation T of a term t, and a multiplicity type φ such

that T and φ are consistent, if
t −→ t′ (with T −→ T ′)

then there are some natural numbers n, n′, and a term t′′ such that

(t)
]3
T −→

n t′′ ←−n
′

(t′)
]3
T ′

n− n′ =

{
2 if the redex of t is of the form of application
1 otherwise.

Proof. Let t = E[r] where r is a redex. By Lemma 15, we define n def
= s(E) + 2 if r is an application, n def

= s(E) + 1

otherwise, and n′ def= s(E). Then, for each kind of redexes, proof goes straightforwardly: For the redex of application,
we use Lemma 12.

Appendix C.2. Consistent Multiplicity Annotations for Arbitrary Arguments
In our proof of Proposition 11, we come across a problem whether a consistent multiplicity annotation can be

obtained in argument position of the logical relation |=. To solve this problem, we give another semantics |=F of types
that is equivalent to the original one |=, using finite canonical forms [5] (FCFs, for short). We restrict arguments of
functions to FCFs in the semantics of |=F, and we can find a consistent multiplicity annotation for any FCF as shown
in Lemma 18. For the sake of simplicity, we impose a restriction on the order of types in the following discussion; we
can generalize the discussion to the arbitrary order in an obvious way.

The set of FCFs of order at most 1 (or simply FCFs) and the set of FCF-values are defined by the following rules,
respectively:

N ::= Ω | m | fail | λx.N | (N1, . . . , Nn) |
(

case prix of m1 → N1 | · · · | mn → Nn
)

W ::= m | λx.N | (W1, . . . ,Wn)

where Ω
def
= fix(f, λx. f x)0 and the case expressions are syntactic sugar for the iterated if expressions:

if x = m1 then N1 else (. . . if x = mn then Nn else Ω).

We assume that all FCF-values are closed, that all the (possibly non-free) variables occurring in FCFs and FCF-values
(except for Ω) are order-0, and that all the closed FCFs and FCF-values are simply typed with types of order at most
1. We remark two differences between the definition of FCFs in the work [5] and ours: The definition in ibid. contains
the case of let-expression let x = y N inN ′, which does, however, not happen in our setting since y must be order-0.
Second, our language has product types (and fail), while that in ibid. does not have them.

We define the alternative semantics of types (|=F, |=F
v , . . .) for types of at most order-2 in the same way as Figure 3

except for the function type case, which is defined as follows:

|=F
v V : (x1 : τ1)→ τ2

def⇐⇒ for any FCF-value W1, |=F
v W1 : τ1 implies |=F VW1 : τ2[x1 7→W1]

By a standard argument on domain theory, we have the following lemma; after this lemma, we do not distinguish
between |= and |=F for types of order at most 2.

40

Lemma 17. For any term t and type τ of order at most 2,

|= t : τ iff |=F t : τ.

Proof. The proof is by induction on the order of τ . The order-0 and order-1 cases are trivial. In the order-2 case, the
“only if” direction is clear by the induction hypothesis. For the “if” direction, we prove its contraposition: we assume
6|= t : τ and prove 6|=F t : τ . Let τ ′0 = τ and

τ ′i =
{
νi+1 : (xi+1: τi+1)→ τ ′i+1

∣∣ Pi+1

}
(0 ≤ i < n)

τ ′n = {νn+1 : int | Pn+1} .

The assumption 6|= t : τ is equivalent to the following condition:

∃p ∈ {0, . . . , n}.
∃!V ′1 . t −→∗ V ′1 ∧ ∃V1. |=v V1 : τ1 ∧
∃!V ′2 . V ′1V1 −→∗ V ′2 ∧ ∃V2. |=v V2 : τ2 ∧

. . .

∃!V ′p . V ′p−1Vp−1 −→∗ V ′p ∧ ∃Vp. |=v Vp : τp ∧
∃!A′p+1. V

′
pVp −→∗ A′p+1 ∧(

A′p+1 = fail ∨ (A′p+1: value ∧ ∃!A′ 6= true. Pp+1[νp+1 7→A′p+1] −→∗ A′)
)

(C.2)

In the case p = 0 above, read the above formula as ∃!A′1. t −→∗ A′1 ∧ (A′1 = fail ∨ (. . .)). We give a proof for
the case that A′p+1: value ∧ . . . ; the proof for the case that A′p+1 = fail is almost the same: Just replace the term s

defined below with t. The goal 6|=F t : τ is equivalent to the following condition:

∃p ∈ {0, . . . , n}.
∃!V ′1 . t −→∗ V ′1 ∧ ∃W1. |=F

v W1 : τ1 ∧
∃!V ′2 . V ′1W1 −→∗ V ′2 ∧ ∃W2. |=F

v W2 : τ2 ∧
. . .

∃!V ′p . V ′p−1Wp−1 −→∗ V ′p ∧ ∃Wp. |=F
v Wp : τp ∧

∃!A′p+1. V
′
pWp −→∗ A′p+1 ∧(

A′p+1 = fail ∨ (A′p+1: value ∧ ∃!A′ 6= true. Pp+1[νp+1 7→A′p+1] −→∗ A′)
)

(C.3)

We define a term
s

def
= λy1, . . . , yp. let νp+1 = ty1 . . . yp in Pp+1

and then, by (C.2),
s V1 . . . Vp −→∗ A′.

Let us consider the interpretation in the call-by-value game model given in the work [5]:

Js V1 . . . VpK = JA′K.

It is proved in ibid. that any element in the game model is the supremum of some ω-chain of FCFs. Hence, for each
i, we have an ω-chain (N ji

i)ji of FCFs such that JViK = supjiJN
ji
i K. Since if JW K ≤ JNK for some FCF-value W

then N must be an FCF-value, and since there is some ji such that N ji
i is an FCF-value, we can choose a subchain

(W ji
i)ji of (N ji

i)ji with
JViK = sup

ji

JW ji
i K.

By the continuity of JsK,

Js V1 . . . VpK = JsK (sup
j1

JW j1
1 K) . . . (sup

jp

JW jp
p K) = sup

j1

. . . sup
jp

JsK JW j1
1 K . . . JW jp

p K = JA′K.

41

As A′ is false or fail , JA′K is a compact element; recall that an element d in a cpo D is compact if for any ω-chain
(di)i in D such that d ≤ supi di there exists i such that d ≤ di (and hence if d = supi di then d = di for some i).
Therefore, there are j1, . . . , jp such that

(JsW j1
1 . . .W jp

p K =) JsK JW j1
1 K . . . JW jp

p K = JA′K.

By the adequacy of the call-by-value game model, we have

sW j1
1 . . .W jp

p −→∗ A′. (C.4)

For all i, since JW ji
i K ≤ JViK,

W ji
i ≤o Vi.

By induction hypothesis, we have
|=F

v Vi : τi.

It is easy to show that, for any values V, V ′ and type τ ,

V ′ ≤o V and |=F
v V : τ imply |=F

v V
′ : τ.

Hence, for all i,
|=F

v W
ji
i : τi,

and by this and (C.4), we can show (C.3) with W ji
i as witnesses of ∃Wi.

The next lemma solves the problem whether we can obtain consistent multiplicity annotations in argument posi-
tion. We define the following:

ST({{
∏n
i=1 int×

∏m
j=1 (φj → φ′j) |M}})

def
=

∏n
i=1 int×

∏m
j=1 (ST(φj)→ ST(φ′j))

ST(x1:φ1, . . . , xn:φn)
def
= x1: ST(φ1), . . . , xn: ST(φn)

order(x1:φ1, . . . , xn:φn;φ)
def
= order(ST(φ1)→ . . .→ ST(φn)→ ST(φ))

Lemma 18. For a closed FCF N and a multiplicity type φ such that N is typed with ST(φ) and ST(φ) is order at
most 1, there is a derivation of `c N : φ.

Proof. We can straightforwardly prove the following more general statement by induction onN : for a (possibly open)
FCF N , a multiplicity type φ, and a multiplicity type environment Φ such that

ST(Φ) `S N : ST(φ), order(Φ;φ) ≤ 1,

there is a derivation of Φ `c N : φ.

Appendix C.3. Proof of Proposition 11
Now we prove Proposition 11.

Proof of Proposition 11. We prove that

|= (t)
]3
T : (τ)

]3
φ implies |= t : τ

by induction on the size of the simple types of τ . For ease of presentation, we use the inductive definition of τ in
Section 2.1 and omit the product case.
τ = {ν : int | P} From Lemma 20 given later.

τ = {f : (x1: τ1)→ τ2 | P} Let φ be of the form {φ1 → φ2 |M}, and suppose |= (t)
]3
T : (τ)

]3
φ , i.e., for any A′ such

that (t)
]3
T −→∗ A′,

|=v A
′ : ({f : (x1: τ1)→ τ2 | P})]3φ . (C.5)

42

Given t −→n A (n ∈ N), we show that

|=v A : (x1: τ1)→ τ2 (C.6)
|=p P [f 7→A]. (C.7)

By Lemma 14 and since |= (t)
]3
T : (τ)

]3
φ , A must be a value. Let A = fix(f, λx1. t2), then

(t)
]3
T −→

∗ A′ = (A)
]3
T ′ =

−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T ′ [f 7→

−→
f
m

])
m

for T ′ such that T −→n T ′ and m def
= T ′(A). By (C.5), we have

|=v

−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T ′ [f 7→

−→
f
m

])
m

:
((
x1: (τ1)

]3
φ1

)
→ (τ2)

]3
φ2

)m
|=p P [f tl 7→ fl tl]l≤m′ [fl 7→fix(f, λx1. (t2)

]3
T ′ [f 7→

−→
f
m

])]l≤m′

where f t1, . . . , f tm′ are all the occurrences of applications of f . The two judgments above imply, respectively,

|=v fix(f, λx1. (t2)
]3
T ′ [f 7→

−→
f
m

]) :
(
x1: (τ1)

]3
φ1

)
→ (τ2)

]3
φ2

(C.8)

|=p P [f 7→fix(f, λx1. (t2)
]3
T ′ [f 7→

−→
f
m

])]. (C.9)

Now we prove (C.6) by using Lemma 17, i.e., for given FCF-value W1 such that |=v W1 : τ1, we show

|= fix(f, λx1. t2)W1 : τ2[x1 7→W1] . (C.10)

By Lemma 18 and the correspondence between derivations of multiplicity type judgments and consistent type anno-
tations, we have a multiplicity annotation T ′1 for W1 that is consistent with φ1. Since |=v W1 : τ1, by Lemma 19,

|= (W1)
]3
T ′1

: (τ1)
]3
φ1
. (C.11)

From the corresponding derivations of (T ′, φ) and (T ′1, φ1) for fix(f, λx1. t2) and W1, respectively, we obtain a
consistent pair (T ′2, φ2) for fix(f, λx1. t2)W1 by Rule (C-APP) in Figure 9. Then,

(fix(f, λx1. t2)W1)
]3
T ′2

= (pr1 (fix(f, λx1. t2))
]3
T ′) (W1)

]3
T ′1

= (pr1

−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T ′ [f 7→

−→
f
m

])
m

) (W1)
]3
T ′1

−→fix(f, λx1. (t2)
]3
T ′ [f 7→

−→
f
m

]) (W1)
]3
T ′1
.

Hence, by (C.8) and (C.11),
|= (fix(f, λx1. t2)W1)

]3
T ′2

: (τ2)
]3
φ2

[x1 7→ (W1)
]3
T ′1

] .

Here x1 occurs in (τ2)
]3
φ2

only if τ1 is order-0, because, after (−)
]1 , function variables must be declared inside of each

refinement types. If τ1 is order-0, (W1)
]3
T ′1

= W1 by Lemma 20, and

(τ2)
]3
φ2

[x1 7→ (W1)
]3
T ′1

] = (τ2)
]3
φ2

[x1 7→W1] = (τ2[x1 7→W1])
]3
φ2
,

where the latter equation is obvious from the definition of (−)
]3 as W1 is a ground value. Hence, in any case on τ1,

|= (fix(f, λx1. t2)W1)
]3
T ′2

: (τ2[x1 7→W1])
]3
φ2
.

43

By induction hypothesis, we have obtained (C.10).
Next, we prove (C.7), i.e.,

|=p P [f 7→fix(f, λx1. t2)] .

If f occurs in P , f has a depth-1 type; hence, by (C.9), it is enough to show

fix(f, λx1. t2) =o fix(f, λx1. (t2)
]3
T ′ [f 7→

−→
f
m

])

assuming these terms have depth-1 types. We only have to show that, for any closed value V1 of ST(τ1),

fix(f, λx1. t2)V1 =o fix(f, λx1. (t2)
]3
T ′ [f 7→

−→
f
m

])V1

since the observational equivalence is extensional. In the above equation, precisely, the right hand side is

fix(f, λx1. (t2)
]3
T ′|t2

[f 7→
−→
f
m

])V1

if we make it explicit the restrictions of type annotations in the definition of (−)
]3 . Now since V1 is order-0, we have a

derivation of `c V1 : φ1, which induces a consistent pair (T ′1, φ1) for V1; also, by Rule (C-APP), we have a consistent
pair (T ′2, φ2) for fix(f, λx1. t2)V1 such that T ′2|fix(f,λx1. t2) = T ′ and T ′2|V1

= T ′1. Then,

fix(f, λx1. t2)V1

=o t2[x1 7→V1][f 7→fix(f, λx1. t2)]

=o {by Lemma 20}

(t2[x1 7→V1][f 7→fix(f, λx1. t2)])
]3
T ′|t2 [T

′
1][T

′]

=o {by Lemma 12}

(t2)
]3
T ′|t2

[x1 7→ (V1)
]3
T ′1

][f 7→ (fix(f, λx1. t2))
]3
T ′]

=o (t2)
]3
T ′|t2

[x1 7→ (V1)
]3
T ′1

][f 7→
−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T ′ [f 7→

−→
f
m

])
m

]

=o fix(f, λx1. (t2)
]3
T ′|t2

[f 7→
−→
f
m

]) (V1)
]3
T ′1

=o fix(f, λx1. (t2)
]3
T ′|t2

[f 7→
−→
f
m

])V1 .

Lemma 19. Let t be a closed term and τ be a type of order at most 1. Let T and φ be a multiplicity annotation and a
multiplicity type for t and τ and suppose that they are consistent and τ ≤mul φ. Then,

|= t : τ implies |= (t)
]3
T : (τ)

]3
φ .

Proof. By induction on the size of the simple types of τ , similarly to the previous lemma.
τ = {ν : int | P} From Lemma 20.
τ = {f : (x : τ1)→ τ2 | P} Let φ be of the form {φ1 → φ2 | M}. By the assumption |= t : τ , for any A such that
t −→∗ A,

|=v A : (x1: τ1)→ τ2 (C.12)
|=p P [f 7→A]. (C.13)

Now we suppose (t)
]3
T −→∗ A′ and show that |=v A

′ : ({f : (x1: τ1)→ τ2 | P})]3φ .

By Lemma 14 and (C.12) and since (t)
]3
T −→∗ A′, there is some value V = fix(f, λx1. t2) and n such that

t −→n V and

A′ = (V)
]3
T ′ =

−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T ′ [f 7→

−→
f
m

])
m

.

44

Let T −→n T ′ and m = T ′(V). Hence, similarly to the previous proof, it is enough to show

|=v fix(f, λx1. (t2)
]3
T ′ [f 7→

−→
f
m

]) :
(
x1: (τ1)

]3
φ

)
→ (τ2)

]3
φ (C.14)

|=p P [f 7→fix(f, λx1. (t2)
]3
T ′ [f 7→

−→
f
m

])]. (C.15)

Now we prove (C.14), i.e., for given V ′1 such that |=v V
′
1 : (τ1)

]3
φ1

, we show

|= fix(f, λx1. (t2)
]3
T ′|t2

[f 7→
−→
f
m

])V ′1 : (τ2)
]3
φ2

[x1 7→V ′1] . (C.16)

where we have made it explicit the restrictions of type annotations in the definition of (−)
]3 . Since τ1 is order-0,

`c V ′1 : φ1; hence we have consistent pairs (T ′1, φ1) for V ′1 and (T ′2, φ2) for V V ′1 . By Lemma 20, V ′1 = (V ′1)
]3
T ′1

and
|=v V

′
1 : τ1. Hence,

fix(f, λx1. (t2)
]3
T ′|t2

[f 7→
−→
f
m

])V ′1

−→ (t2)
]3
T ′|t2

[x1 7→V ′1][f 7→
−−−−−−−−−−−−−−−−−−−−−−→
fix(f, λx1. (t2)

]3
T ′|t2

[f 7→
−→
f
m

])
m

]

= (t2)
]3
T ′|t2

[x1 7→ (V ′1)
]3
T ′1

][f 7→ (V)
]3
T ′]

= {by Lemma 12}

(t2[x1 7→V ′1][f 7→V])
]3
T ′|t2 [T

′
1][T

′] .

By the result (C.1) remarked after Lemma 13, we have T ′2 −→ T ′|t2 [T ′1][T ′]; hence, by Lemma 14,

(V V ′1)
]3
T ′2
−→∗ (t2[x1 7→V ′1][f 7→V])

]3
T ′|t2 [T

′
1][T

′] .

Hence,

fix(f, λx1. (t2)
]3
T ′|t2

[f 7→
−→
f
m

])V ′1 =o (V V ′1)
]3
T ′2
. (C.17)

Now from (C.12), |= V V ′1 : τ2[x1 7→V ′1], and by induction hypothesis,

|= (V V ′1)
]3
T ′2

: (τ2[x1 7→V ′1])
]3
φ2

(
= (τ2)

]3
φ2

[x1 7→V ′1]
)
,

and hence, by (C.17), we have shown (C.16).
Finally, (C.15) is shown from (C.13) quite similarly to the proof of Proposition 11.

Lemma 20. Let t be a closed term and τ be a type of order 0. Let T and φ be a multiplicity annotation and a
multiplicity type for t and τ and suppose that they are consistent and τ ≤mul φ. Then,

(τ)
]3
φ = τ and (t)

]3
T =o t .

Proof. On types, it is clear by definition. On terms, it is clear from Lemma 14.

Appendix C.4. Proof of Proposition 10

Proposition 10 for the other three transformations is proved similarly to the above proof for (−)
]3 . The only subtle

point is the base case for (−)
]4 .

As explained in Section 3.1, by (−)
]4 ,

(f1, f2) :
{

(f1, f2) : (int→ int)2
∣∣ ∀x1, x2. P [f1 x1, f2 x2]

}
45

is transformed to:

f1 × f2 : ((x1, x2) : int× int)→ {(r1, r2) : int× int | P [r1, r2]} .

By the semantics of types, the former is equivalent to

for all i, xi, and A, if fixi −→∗ A, then A is value, and (C.18)
for all x1 and x2, |=p P [f1x1, f2x2], (C.19)

while the latter is equivalent to

for all x1, x2, and A, if (f1x1, f2x2) −→∗ A, then A is value (V1, V2) and |=p P [V1, V2], (C.20)

for all x1 and A, if f1x1 −→∗ A, then A is value V and |=p P [V,⊥], (C.21)

for all x2 and A, if f2x2 −→∗ A, then A is value V and |=p P [⊥, V], and (C.22)

|=p P [⊥,⊥]. (C.23)

Here (C.21), (C.22), and (C.23) hold because our f1×f2 is not just λ(x1, x2). (f1 x1, f2 x2) but utilizes⊥ as explained
in Section 3.2.

Now the implication from the former to the latter and that from the latter to (C.18) are obvious. We show (C.19)
from the latter.

First note that, since f1x1 and f2x2 are the only application occurrences inP [f1x1, f2x2] because of (((−)]1)]2)]3 ,
and by the assumption in Section 2.3 that a predicate does not contain fail nor fix, when we evaluate P [f1x1, f2x2],
an effect may happen only due to f1x1 or f2x2. By (C.21) and (C.22), for any x1 and x2, f1x1 or f2x2 never fail. If
both f1x1 and f2x2 evaluate to values, by (C.20), we have |=p P [f1x1, f2x2].

If f1x1 or f2x2 diverges, P [f1x1, f2x2] also diverges as follows. By the assumption in Section 2.3 that we use
“branch-strict if” in refinement predicates, during the evaluation of P [f1x1, f2x2], every occurrence of application
must be evaluated unless some effect happens. Concretely, if both f1x1 and f2x2 diverge, P [f1x1, f2x2] diverges
due to one of f1x1 and f2x2 that is evaluated earlier than the other; if f1x1 diverges and f2x2 terminates to a value,
P [f1x1, f2x2] diverges due to f1x1; and if f2x2 diverges and f1x1 terminates to a value, P [f1x1, f2x2] diverges due
to f2x2.

Appendix D. Proof of Soundness of Verification by (−)
]′

Here we prove Theorem 4, i.e., the soundness of verification by (−)
]′ .

First we remark that the difference between (−)
]′ and (−)

] is just the assume-expressions inserted by InstVar(−).
For any terms t, t′,

assume (t) ; t′ ≤o t′

since assume (t) may only evaluate to true or diverge; recall that assume (fail) diverges. Therefore, for any term
t, (t)

]′ ≤o (t)
], so we have:

|= (t)
]
T : (τ)

]
φ implies |= (t)

]′

T : (τ)
]
φ . (D.1)

Proof of Theorem 4. We reduce Theorem 4 to Lemma 21 given below; this reduction part is almost the same as the
proof of Theorem 1, so we describe only essential points, simplifying the setting. Let τ = τ1 → int where τ1 is
order-1, and for given V1 such that |=v V1 : τ1, we prove |= t V1 : int.

By Lemma 19, we have |=v (V1)
]

: (τ1)
], and hence |=v (V1)

]′
: (τ1)

] by (D.1). By the assumption that
|= (t)

]′

T : (τ)
]
φ, we have |=v (t)

]′
(V1)

]′
: (int)

]. Now, (t V1)
]′ ≤o (t)

]′
(V1)

]′ since the left hand side is the right

hand side plus assume expressions; hence, |= (t V1)
]′

: (int)
]. Since int is order-0, by Lemma 21 below, we have

|= (t V1)
]

: (int)
], and by Lemma 20, |= t V1 : int.

46

Lemma 21. For any closed A-normal form t (defined in Figure 10), a type τ of order-0, and a consistent pair of
a multiplicity annotation T of t and a multiplicity type φ such that τ ≤mul φ, (t)

]′

T and (t)
]
T are observationally

equivalent; and hence,
|= (t)

]′

T : (τ)
]
φ iff |= (t)

]
T : (τ)

]
φ.

Proof (Overview). Here we give an overview of our proof and an example to explain our intuitive idea; we give a
formal proof after this overview. In the rest of this section, by “A-normal forms” we mean those defined in Figure 12
(rather than Figure 10).

First, we define (−)
]34
T by eliminating InstVar from (−)

]′34
T ; i.e., in Figure 13, we drop the subscript B and

replace the case of application with the following

(f(x1, . . . , xn, g1, . . . , gm))
]34
T

def
= pr1(f(−→z T (f)

))

where z def
= (x1, . . . , xn, λỹj . (g1 y1, ..., gm ym)) .

Since (−)
]34
T is just an A-normal form version of ((−)]3T)]4 , it suffices for the lemma to prove that (t)

]34
T is observa-

tionally equivalent to (t)
]′34
T for any ground closed A-normal form t. That is, we will prove that the assume expressions

inserted by InstVar(−) are satisfied and hence can be removed without changing the meaning.
As explained in the definition of InstVar(−), the assume expressions inserted by InstVar(−) are properties

satisfied naturally by the image of (−)
]34 . These properties are true for the images of subterms of t or for variables

that will be instantiated with the images of such subterms, but not necessarily true for arbitrary variables. Now since
t is a ground closed term, variables should be instantiated with such images; to realize such an instantiation, we
“evaluate” the two programs (t)

]′

T and (t)
]′34
T . Also, though it is easy to prove that (V)

]′34 satisfies the properties by
unfolding the definition of (−)

]′34 in Figure 13, it is not obvious if such V is a non-value e. The above “evaluation”
transforms (e)

]′34 to the form (V)
]′34 , and allows us to consider only such value cases. We call this “evaluation”

N-reduction; it is defined similarly to evaluation, but keeps the form of the A-normal forms.
In order for N-reduction to terminate, we can assume that the given whole (ground closed) term t terminates,

because if t diverges, by Lemma 14 and since (t)
]′34 ≤o (t)

]34 , both (t)
]34 and (t)

]′34 diverge and then the current
lemma holds. Since N-reduction is simulated by the evaluation, if evaluation terminates, N-reduction also terminates.

Though intuitively we N-reduce (t)
]′34 , in fact we define N-reduction for t, and we show that

t −→N t′ implies (t)
]′34 =o (t′)

]′34 .

Also (−)
]34 has this property. Now since N-reduction terminates for given t, we have the normal form t′ of N-

reduction, and for the normal form of N-reduction, it is easy to show that

(t′)
]′34 =o (t′)

]34

because in N-normal form we have no application and InstVar(−) happens only in applications. In this way, we can
show that

(t)
]′34 =o (t′)

]′34 =o (t′)
]34 =o (t)

]34 .

In the rest of this overview, we explain the above idea concretely with the following example of t:

let f = fix(f ′, λx′. t′) in

let x = 3 in

let y = fx in t′′
(D.2)

where let T (f) = 2.

47

Now (t)
]′34 is

let f = fix(f ′, λ(x′1, x
′
2). ((t′)

]′34 [x′ 7→x′i])i=1,2) in

let x = 3 in

let y =

let f ′′ = λ(y1, y2).
(
let w = f(y1, y2) in assume (. . .) ;w

)
in pr1(f ′′(x, x))

in (t′′)
]′34 .

(D.3)

Since f in t is bound to the value fix(f ′, λx′. t′), we could calculate by the definition in Figure 13 that (the body of)
f in (t)

]′34 is syntactically the product

λ(x′1, x
′
2). ((t′)

]′34 [x′ 7→x′1], (t′)
]′34 [x′ 7→x′2])

of the duplication of λx′. (t′)]
′
34 (it is not the case if f in t is bound to a non-value). Then, it is easy to show that such

syntactical product of the duplication satisfies the predicates in assume (. . .) above (as shown in the last of the proof
of Lemma 27); here recall that, the predicates just state that all the function variables after applying (−)

]′34 behave as
the product of duplicated functions. Thus, we can remove the assume expression, and by simple reductions, we have

let f = fix(f ′, λ(x′1, x
′
2). ((t′)

]′34 [x′ 7→x′i])i=1,2) in

let x = 3 in

let y = pr1(f(x, x)) in (t′′)
]′34 .

(D.4)

Now we want to transform the non-value pr1(f(x, x)) to the form (V)
]′34 , as f was so and it helped the removal

of assume (. . .) as above.
The above is observationally equivalent to

let f = fix(f ′, λ(x′1, x
′
2). ((t′)

]′34 [x′ 7→x′i])i=1,2) in

let x = 3 in

let y = pr1(((t′)
]′34 [x′ 7→x][f ′ 7→ f])i=1,2) in (t′′)

]′34 .

Since our language is deterministic, pr1(t, t) =o t for any term t (Lemma 25 - (1)); hence the above term is equivalent
to

let f = fix(f ′, λ(x′1, x
′
2). ((t′)

]′34 [x′ 7→x′i])i=1,2) in

let x = 3 in

let y = (t′)
]′34 [x′ 7→x][f ′ 7→ f] in (t′′)

]′34 .

(D.5)

We define N-reduction so that it reduces (D.2) to the following

let f = fix(f ′, λx′. t′) in

let x = 3 in

let y = t′[x′ 7→x][f ′ 7→ f] in t′′ .

(D.6)

It is clear that (−)
]′34 of (D.6) becomes (D.5); thus, (−)

]′34 preserves N-reduction to observational equivalence.
As the above N-reduction from (D.2) to (D.6), N-reduction is just evaluation except that it keeps the form of A-

normal form. Hence, repeating this N-reduction, fx in (D.2) becomes some value V ; therefore, pr1(f(x, x)) in (D.4)
turns out to be observationally equivalent to (V)

]′34 .
Repeating N-reduction, we finally obtain its normal form, which is of the following form

let x1 = V1 in . . . let xn = Vn in xi . (D.7)

48

s ::= (x1, . . . , xn) | if x then s1
b1 else s2

b2 | let x = db1 in sb2

d ::= n | op(x1, . . . , xn) | fix(f, λ(x1, . . . , xn). sb) | f (x1, . . . , xn) | (x1, . . . , xn) | prix | fail

Figure D.19: Labeled A-normal forms

In the fail-case,
(t)

]′34 =o (fail)
]′34 = fail = (fail)

]34 =o (t)
]34 .

Otherwise, by applying (−)
]′34 to (D.7), we have

let x1 = (V1)
]′34 in . . . let xn = (Vn)

]′34 in xi (D.8)

and by applying (−)
]34 to (D.7), we have

let x1 = (V1)
]34 in . . . let xn = (Vn)

]34 in xi . (D.9)

Since (Vj)
]′34 and (Vj)

]34 (j = 1, . . . , n) are values, by β-conversion, (D.8) and (D.9) are observationally equivalent
to (Vi)

]′34 and (Vi)
]34 , respectively. Since now xi has a ground type, so does Vi; hence (Vi)

]′34 = (Vi)
]34 = Vi.

Therefore, (D.8) and (D.9) are observationally equivalent, and so are (t)
]′34 and (t)

]34 .

The rest of this section is just a formalization of the proof sketch above.

Appendix D.1. N-reduction

From now, we define N-reduction. Though N-reduction reduces terms before applying (−)
]′34 , our intuitive idea

is to transform terms after applying (−)
]′34 as above; so we put labels to A-normal forms to track the information of

the sets B in the definition of (−)
]′34
T,B .

We define labeled A-normal forms in Figure D.19, where we fix a countable set of labels and we use b as a meta-
variable for labels. If we drop all labels in labeled terms d and s, we obtain terms e and t in the classes defined in
Figure 12, respectively. We implicitly use this label-dropping transformation to derive notions for s from those for t.

We define labeled value U as

U ::= n | fix(f, λ(x1, . . . , xn). sb) | (x1, . . . , xn)

and N-reduction context R as
R ::= [] | let x = U b1 in Rb2 .

For the definition of N-reduction, we prepare one relation: for R, x, and U b, we write x R U b if x refers to U b

in R; precisely, x R U
b is defined as below.

x [] U
b def⇐⇒ false

x
let x′=U ′b

′
1 in Rb′2

U b
def⇐⇒ x R U

b or
(
x = x′, U b = U ′

b′1 , and x 6 RU
′′b′′ for any U ′′b

′′)
Note that, if x R U b, then U b is uniquely determined from R and x, and for a closed term of the form R[t] and
x ∈ FV (t), there exists U b such that x R U

b. We sometimes omit b; by x R U , we mean x R U
b for some b.

Given x R U
b, we define R|x as an N-reduction context such that

R = R|x[let x = U b in R′
b′

] and x 6 R′U
b

for some b′ and N-reduction context R′; such R|x always exists and is unique. We use R|x as a context for U .
Any closed labeled A-normal form s is in exactly one of the following three cases.

49

R[if x then s1
b1 else s2

b2] −→N

{
R[s1] (if x R 0b

′
)

R[s2] (if x R m
b′ ,m 6= 0)

R[let y = op(x1, . . . , xn)
b1 in sb2] −→N R[let y = ([[op]](m1, . . . ,mn))

b1 in sb2]

where xi R mi
b′i

R[let y = (f (x1, . . . , xn, g1, . . . , gm))
b1 in sb2] −→N R[cclet y =

(
s′[x′i 7→xi]i[g

′
j 7→ gj]j [f

′ 7→ f]
)b′′

in sb2]

where f R fix(f ′, λ(x′1, . . . , x
′
n, g
′
1, . . . , g

′
m). s′

b′′
)
b′

.

R[let y = (prix)
b1 in sb2] −→N R[let y = Ui

b′i in sb2]

where x R (x1, . . . , xn)
b′ , xi R|x Ui

b′i

R[let y = failb1 in sb2] −→N fail

Figure D.20: N-reduction rules

cclet y = (x1, . . . , xn)
b

in s′
b′ def

= let y = (x1, . . . , xn)
b

in s′
b′

cclet y = (if x then s1
b1 else s2

b2)
b

in s′
b′ def

=

if x then (cclet y = s1
b in s′

b′
)
b1

else (cclet y = s2
b in s′

b′
)
b2

cclet y = (let x = db1 in sb2)
b

in s′
b′ def

= let x = db1 in (cclet y = sb in s′
b′

)
b2

Figure D.21: Commuting-conversion of let

• R[(x1, . . . , xn)]

• R[if x then s1
b1 else s2

b2]

• R[let y = db1 in sb2]
where d = op(x1, . . . , xn), f (x1, . . . , xn), prix, fail

We will treat the first case as normal forms of N-reduction; so we define N-reduction rules for the other two cases.
We call if x then s1

b1 else s2
b2 and let y = db1 in sb2 in the two latter cases redexes of N-reduction (or simply

redexes).
We define N-reduction rules for closed labeled A-normal forms in Figure D.20. Here, cclet is a kind of commuting-

conversion of let: for labels b, b′, a variable y, and labeled A-normal forms s, s′, we define an labeled A-normal form
cclet y = sb in s′

b′ by induction on s as in Figure D.21. (Details of commuting conversion will be explained
in Appendix D.3, especially at (D.16).) For A-normal forms t and t′, we define cclet y = t in t′ in a similar way to
Figure D.21. On the application case, below, we often suppose that f = f ′, xi = x′i, and gj = g′j due to α-renaming.
For multiplicity annotations T and T ′, we define T −→N T ′ in a similar way to the definition of T −→ T ′.

N-reduction reduces labeled A-normal forms to either labeled A-normal forms or fail; hence, the normal forms of
N-reduction are either R[(x1, . . . , xn)] or fail. It is clear that, if the evaluation of s terminates, so does N-reduction
of s, which can be shown by defining some simulation relation.

Appendix D.2. (−)
]′N : (−)

]′34 for labeled A-normal forms

We define (−)
]′N , which is a refined version of (−)

]′34 for labeled A-normal forms; we define (−)
]′N by tracking

the information of the sets B via the labels put to labeled A-normal forms.

50

Bif x then s1
b1 else s2

b2

b
def
=

{
∅ if b = b1 or b2
Bsib if b ∈ L(si)

Blet x=db1 in sb2
b

def
=



∅ if b = b1

∅ if d = fix(f, λy. s′
b′′

), b = b′′

Bs
′

b if d = fix(f, λy. s′
b′′

), b ∈ L(s′)

{x = d} if b = b2, d = f(x̃i),prix
′

∅ if b = b2, d 6= f(x̃i),prix
′

Bsb ∪ {x = d} if b ∈ L(s), d = f(x̃i),prix
′

Bsb if b ∈ L(s), d 6= f(x̃i),prix
′

Figure D.22: Bs
b : B used at b in the calculation of (s)]

′
34

T

((x1, ..., xn, f1, ..., fm))
]′N
T,s0

def
= (x1, ..., xn, λ(y1, ..., ym). (f1 y1, ..., fm ym))(

if x then s1
b1 else s2

b2
)]′N
T,s0

def
= if x then (s1)

]′N
T,s0

else (s2)
]′N
T,s0(

let x = db1 in sb2
)]′N
T,s0

def
= let x = (d)

]′34
T ′|d,B

s0
b1

in (s)
]′N
T,s0

(fail)
]′N
T,s0

def
= fail

Figure D.23: (−)]
′
N : (−)]

′
34 for labeled A-normal forms

First, for an labeled A-normal form s, we define the set L(s) of labels of s as follows.

L((x1, . . . , xn))
def
= ∅

L(if x then s1
b1 else s2

b2)
def
= {b1} ∪ {b2} ∪ L(s1) ∪ L(s2)

L(let x = db1 in sb2)
def
= {b1} ∪ {b2} ∪ L(d) ∪ L(s)

L(fix(f, λ(x1, . . . , xn). sb))
def
= {b} ∪ L(s)

L(d)
def
= ∅ (d 6= fix(. . .))

We call a labeled A-normal form s label-disjoint if all the occurrences of unions “∪” above are disjoint unions when
we calculate L(s) by the above definition. We assume that for any label-disjoint labeled A-normal form s, all the
variables declared by let-expressions in s are distinct. It is obvious that we have a canonical way of labeling by which,
for an A-normal form t, we obtain label-disjoint labeled A-normal form (t)lb.

Next, we give a way by which, via labels b, we can track the information of the sets B in the definition of (−)
]′34
T,B .

For a label-disjoint labeled A-normal form s and b ∈ L(s), we define Bsb as in Figure D.22; Bsb is merely the set B

used at the position b in s when we calculate (s)
]′34
T by the definition in Figure 13. Note that, for labeled A-normal

forms s0, s and a context C such that s0 −→∗N C[s], we have L(s0) ⊇ L(s); hence, if further s0 is label-disjoint, for

b ∈ L(s), Bs0b is well-defined. For an A-normal form t0, we write B(t0)
lb

b as Bt0b .
Now, given a label-disjoint labeled A-normal form s0 and a labeled A-normal form s such that s0 −→n

N C[s]
(n ≥ 0) for some context C and a multiplicity-annotation T for s0 with T −→n

N T ′, we define a (non-labeled) term
(s)

]′N
T,s0

by induction on s in Figure D.23; here, we also define (−)
]′N
T,s0

for fail, a normal form of N-reduction. On the

let-case, below, we write (d)
]′34
T ′|d,B

s0
b1

simply as (d)
]′34
T,B

s0
b1

. For an A-normal form t0, we write (−)
]′N
T,(t0)lb

as (−)
]′N
T,t0

.

51

([])
]′N
T,s0

def
= [](

let x = U b1 in Rb2
)]′N
T,s0

def
= let x = (U)

]′34
T,B

s0
b1

in (R)
]′N
T,s0

.

Figure D.24: (−)]
′
N for N-reduction contexts

Also, for an N-reduction context R such that s0 −→∗N R[s] for some s, we define (R)
]′N
T,s0

in Figure D.24. Then,

(R[s])
]′N
T,s0

= (R)
]′N
T,s0

[
(s)

]′N
T,s0

]
.

Appendix D.3. Preliminaries to main lemma

We show several lemmas for proving Lemma 27 given in the next subsection, from which the goal (Lemma 21)
follows.

First, we give a lemma for cclet.

Lemma 22. (1) For any y, s1, s2, b1, b2, and R,

cclet y = R[s1]
b1 in s2

b2 = R[cclet y = s1
b1 in s2

b2].

(2) For any x, y, s1, s2, s′, b1, b2, b, and b′,

cclet y = (cclet x = s1
b1 in s2

b2)
b

in s′
b′

= cclet x = s1
b1 in (cclet y = s2

b in s′
b′

)
b2
.

(3) For R, y, b1, b2, s1, s2, and s′1,
R[s1] −→N R[s′1]

implies
R[cclet y = s1

b1 in s2
b2] −→N R[cclet y = s′1

b1 in s2
b2].

(4) For R, y, s, b, s′, b′, and an A-normal form t0 such that

(t0)lb −→∗N R[cclet y = sb in s′
b′

] ,

and for a multiplicity annotation T for t0,(
cclet y = sb in s′

b′
)]′N
T,t0

= cclet y = (s)
]′N
T,t0

in (s′)
]′N
T,t0

.

Proof. (1) Clear by induction on R.
(2) Straightforward by induction on s1.
(3) Straightforward by a case analysis on the redex of R[s1] −→N R[s′1]; we use Lemma 22 - (1), and in the case

of application, we use Lemma 22 - (2). We show only the application case.
Let

s1 = R1[let x = (f(x̃, g̃))
b′1 in s′

b′2]

f R[R1] fix(f, λ(x̃, g̃). s′
b′′

)
b′

.

Now R[s1] −→N R[s′1] and

R[s1] = R[R1[let x = (f(x̃, g̃))
b′1 in s′

b′2]] −→N R[R1[cclet x = s′
b′′

in s′
b′2]].

52

Hence,
s′1 = R1[cclet x = s′

b′′
in s′

b′2].

Then,

R[cclet y = s1
b1 in s2

b2]

= R[cclet y = (R1[let x = (f(x̃, g̃))
b′1 in s′

b′2])
b1

in s2
b2]

= {by Lemma 22 - (1)}

R[R1[cclet y = (let x = (f(x̃, g̃))
b′1 in s′

b′2)
b1

in s2
b2]]

= R[R1[let x = (f(x̃, g̃))
b′1 in (cclet y = s′

b1 in s2
b2)

b′2
]]

−→N R[R1[cclet x = s′
b′′

in (cclet y = s′
b1 in s2

b2)
b′2

]]

= {by Lemma 22 - (2)}

R[R1[cclet y = (cclet x = s′
b′′

in s′
b′2)

b1
in s2

b2]]

= {by Lemma 22 - (1)}

R[cclet y = (R1[cclet x = s′
b′′

in s′
b′2])

b1
in s2

b2]

= R[cclet y = s′1
b1 in s2

b2].

(4) Straightforward by induction on s.

Next, we give a lemma on the labeling by b and show that (−)
]′N and (−)

]′34 are equal in some sense. We define
the sets of s-sb contexts (ranged by Ss) and s-db contexts (ranged by Sd) by the following rules:

Ss ::= let y = db in l | let y = fix(f, λx. l)
b1 in sb2 | if x then l else sb | if x then sb else l

l ::= [] | Ss
b

Sd ::= let y = [] in sb | let y = db1 in Sd
b2 | let y = fix(f, λx. Sd

b)
b1

in sb2

| if x then Sd
b1 else sb2 | if x then sb1 else Sd

b2

For any s, d, b, Ss, and Sd, Ss[s
b] and Sd[db] are labeled A-normal forms.

Lemma 23. (1) Given a label-disjoint labeled A-normal form s0, an s-db context Sd, and fix(f, λx. sb)
b′

such that

s0 = Sd[fix(f, λx. sb)
b′

],
Bs0b = Bs0b′ .

(2) Given a label-disjoint labeled A-normal form s0, an s-sb context Ss, and sb such that s0 = Ss[s
b], the following

holds.

When s = if x then s1
b1 else s2

b2 , we have Bs0b1 = Bs0b2 = Bs0b .

When s = let y = db1 in s′
b2 , we have Bs0b1 = Bs0b ; further,

• when d 6= f (x̃) nor prix, we have Bs0b2 = Bs0b ,

• when d = f (x̃) or prix, we have Bs0b2 = Bs0b ∪ {x = d}.

(3) Given a label-disjoint labeled A-normal form s0, an s-sb context Ss, and sb such that s0 = Ss[s
b], and a

multiplicity annotation T for s0,
(s)

]′N
T,s0

= (s)
]′34
T,B

s0
b

.

53

Proof. (1) Clear by induction on Sd.
(2) Clear by induction on Ss.
(3) Straightforward by induction on s and by (2) of this lemma.

The next lemma shows that db occurring after N-reduction also occurs before the N-reduction (Lemma 24 - (1)),
and shows where a binding in Bt0b is N-reduced (Lemma 24 - (4)). Lemmas 24 - (2), (3) below are used only for
Lemma 24 - (4). For Sd, we define the set LBV (Sd) of “let-binding variables” of Sd as follows:

LBV (let y = [] in sb)
def
= ∅

LBV (let y = db1 in Sd
b2)

def
= LBV (Sd) ∪ {y}

LBV (let y = fix(f, λx. Sd
b)
b1

in sb2)
def
= LBV (Sd)

LBV (if x then Sd
b1 else sb2)

def
= LBV (Sd)

LBV (if x then sb1 else Sd
b2)

def
= LBV (Sd)

Similarly, for R we define LBV (R) as follows:

LBV ([])
def
= ∅

LBV (let x = U b1 in Rb2)
def
= LBV (R) ∪ {x}

We say that (x = d) occurs in s if there exist some b1, b2, s′, and C such that s = C[let x = db1 in s′
b2].

Lemma 24. (1) For any db, s, and Sd
′ such that

s −→N Sd
′[db],

there exists Sd such that
s = Sd[db] and LBV (Sd) ⊆ LBV (Sd

′).

(2) For any Sd and db such that Sd[db] is label-disjoint,

{w | ∃d. (w = d) ∈ BSd[d
b]

b } ⊆ LBV (Sd).

(3) For any s, s′, x, and d such that d is not a labeled value and s −→N s′, if (x = d) occurs in s′, so does in s.

(4) For a closed ground A-normal form t0 such that

(t0)lb −→∗N R′[let y = d′
b′1 in s′2

b′2]

and for (w = d) ∈ Bt0b′1 , there exist b1, b2, R, and s such that

(t0)lb −→∗N R[let w = db1 in sb2] −→+
N R′[let y = d′

b′1 in s′2
b′2]

where −→+
N is the transitive closure of −→N.

Proof. (1) The proof is given by a case analysis on the redex of s. We show only the case of application; the other
cases are clear. Hence, we suppose the following:

s = R[let y = (f (x̃, g̃))
b1 in s2

b2] (D.10)

f R fix(f, λ(x̃, g̃). s′′
b′′

)
b′′′

(D.11)

Sd
′[db] = R[cclet y = s′′

b′′
in s2

b2] (D.12)

54

By (D.12), db occurs in R, s′′, or s2; the cases of R and s2 are clear. In the case of s′′, there exists some Sd
′′ such

that
s′′ = Sd

′′[db]

and
Sd
′ = R[cclet y = Sd

′′b′′ in s2
b2].

By (D.11), there exist some R′ and b′ such that

R = R|f
[
let f = fix(f, λ(x̃, g̃). s′′

b′′
)
b′′′

in R′
b′]
,

and so we define

Sd
def
= R|f

[
let f = fix(f, λ(x̃, g̃). Sd

′′b′′)
b′′′

in R′[let y = (f (x̃, g̃))
b1 in s2

b2]
b′]
.

Then,
Sd[db] = s

and
LBV (Sd) = LBV (R|f) ∪ LBV (Sd

′′) ⊆ LBV (R) ∪ LBV (Sd
′′) = LBV (Sd

′).

(2) Straightforward by induction on Sd.
(3) Straightforward by a case analysis on the redex of s.
(4) Let Sd

′ def= R′[let y = [] in s′2
b′2]. By using (1) of this lemma repeatedly, there exists Sd such that

(t0)lb = Sd[d′
b′1] LBV (Sd) ⊆ LBV (Sd

′). (D.13)

By (2) of this lemma,
w ∈ {w′ | ∃d′. (w′ = d′) ∈ Bt0b′1} ⊆ LBV (Sd).

Since LBV (Sd
′) = LBV (R′), w ∈ LBV (R′). Now, let us define Ri and ri as

(t0)lb = R0[r0] −→N R1[r1] −→N . . .

until the N-reduction terminates where each ri is the redex of Ri[ri]. Then, we define

n
def
= min{i | w ∈ LBV (Ri)} − 1.

Hence, we have
Rn[rn] −→N Rn+1[rn+1]

where w /∈ LBV (Rn) and w ∈ LBV (Rn+1). Let Rn+1[rn+1] is of the form Rn[s′′′]; then, there exists U such that
(w = U) occurs in s′′′.

Note that, if n = −1 above, (w = U) occurs in (t0)lb. If (w = U) occurs in (t0)lb, it yields a contradiction as
follows. Since b′1 occurs in t0 by (D.13), and since (w = d) ∈ Bt0b′1

, (w = d) also occurs in (t0)lb, which can be
shown by induction on t0. We defined the notion of an A-normal form as all the variables declared by let-expressions
are distinct; hence, the fact that both (w = U) and (w = d) occur in t0 is a contradiction, since d is not a labeled
value and so U 6= d.

Also note that, if the following holds:

for some d′′, b1, b2, R, and s,
(
d′′ is not a labeled value and

(t0)lb −→∗N R[let w = d′′
b1 in sb2] −→+

N R′[let y = d′
b′1 in s′2

b′2] ,

)
(D.14)

then d′′ = d and hence the goal holds; this is shown as follows. As explained above, (w = d) occurs in (t0)lb and the
variables are distinct, and also (w = d′′) occurs in (t0)lb by using (3) of this lemma repeatedly; hence, d and d′′ must
be the same.

55

Now by using the fact that (w = U) occurs in s′′′, we show that (w = U) occurs in rn or the goal of this lemma
holds; we show this by a case analysis on the redex rn. In the case that

Rn[if x then s1
b1 else s2

b2] −→N

{
Rn[s1] (x Rn 0b

′
)

Rn[s2] (x Rn
mb′ ,m 6= 0)

(w = U) occurs in si, and hence also in rn. In the case that

Rn[let y = op(x1, . . . , xn)
b1 in sb2] −→N Rn[let y = ([[op]](m1, . . . ,mn))

b1 in sb2]

if y = w and [[op]](m1, . . . ,mn) = d, then (D.14) holds with d′′ = op(x1, . . . , xn); otherwise, (w = U) occurs in s
and hence in rn. In the case that

Rn[let y = (f (x̃, g̃))
b1 in sb2] −→N Rn[cclet y = s′

b′′
in sb2]

f Rn
fix(f, λ(x̃, g̃). s′

b′′
)
b′

if y = w, then (D.14) holds; otherwise if (w = U) occurs in s, so does in rn; otherwise, (w = U) occurs in s′, and
then by (1) whose d is instantiated by fix(f, λ(x̃, g̃). s′

b′′
), (w = U) occurs in (t0)lb. In the case that

Rn[let y = (prix)
b1 in sb2] −→N Rn[let y = Ui

b′i in sb2]

if y = w, then (D.14) holds; otherwise if (w = U) occurs in s, so does in rn; otherwise, (w = U) occurs in Ui, and
then by (1) whose d is instantiated by Ui, (w = U) occurs in (t0)lb.

Finally, we show that, for any n ≥ 0, R′, and r′ such that

(t0)lb −→n
N R′[r′]

and r′ is the redex ofR′[r′], if (w = U) occurs in r′, then the goal of this lemma holds; if this is proved, we instantiate
R′[r′] with the Rn[rn] above. We show this by induction on n. In the case n = 0, (w = U) occurs in t0, which is a
contradiction. In the case n > 0, suppose

(t0)lb −→∗N R[r] −→N R′[r′]

and (w = U) occurs in r′; we show the goal of this lemma by a case analysis on the redex r. The following proof
goes on quite similarly to the previous. In the case that

R[if x then s1
b1 else s2

b2] −→N

{
R[s1] (x R 0b

′
)

R[s2] (x R m
b′ ,m 6= 0)

(w = U) occurs in si, and so does in r; hence the goal holds by IH. In the case that

R[let y = op(x1, . . . , xn)
b1 in sb2] −→N R[let y = ([[op]](m1, . . . ,mn))

b1 in sb2]

if y = w, then (D.14) holds; if (w = U) occurs in s, so does in r, and hence the goal holds by IH. In the case that

R[let y = (f (x̃, g̃))
b1 in sb2] −→N R[cclet y = s′

b′′
in sb2]

f R fix(f, λ(x̃, g̃). s′
b′′

)
b′

if y = w, then (D.14) holds; if (w = U) occurs in s, so does in r, and hence the goal holds by IH; otherwise, (w = U)

occurs in s′, and then by (1) whose d is instantiated by fix(f, λ(x̃, g̃). s′
b′′

), (w = U) occurs in (t0)lb. In the case
that

R[let y = (prix)
b1 in sb2] −→N R[let y = Ui

b′i in sb2]

if y = w, then (D.14) holds; if (w = U) occurs in s, so does in r, and hence the goal holds by IH; otherwise, (w = U)
occurs in Ui, and then by (1) whose d is instantiated by Ui, (w = U) occurs in (t0)lb.

56

V̄ ::= n | fix(f, λx. t) | (V̄1, . . . , V̄n) | x | priV̄

Ē ::= [] | op(˜̄V , Ē, t̃) | if Ē then t1 else t2 | Ē t | V̄ Ē | (˜̄V , Ē, t̃) | priĒ

(fix(f, λx. t)) V̄ = t[f 7→fix(f, λx. t)][x 7→ V̄] λx. V̄ x = V̄ (x /∈ FV (V̄))

pri(V̄1, . . . , V̄n) = V̄i (pr1V̄ , . . . ,prnV̄) = V̄

Ē[t] = (let x = t in Ē[x]) (x /∈ FV (Ē))

Figure D.25: λc-calculus

Below, we often use a computational lambda calculus (λc-calculus for short) [10], which is the standard call-by-
value equational theory. Their axioms are listed in Figure D.25, where note that the notion of a value V̄ for this
equational theory can be open and hence the rule for V̄ is extended from that for V in Figure 1 as follows: (i) any
variable is a value and (ii) a projection of a value is also a value. The form of the rule for Ē is the same as that for
E in Figure 1 except that the notion of a value V̄ is extended as above. In the rest of this section, we do not use the
original notion of a value and use only the extended notion of a value; so we call the latter simply a value and use the
metavariable V rather than V̄ . We do similarly also for the notion of an evaluation context. The λc-calculus is sound
for the observational equivalence, and we write equations proved by the λc-calculus simply by using =o.

The last axiom in Figure D.25 is called commuting conversion. To explain how this axiom can be used, we prove
the following equation, which is used later. For any terms t1, . . . , tn, and t′,

let x = (t1, . . . , tn) in t′ =o

 let x1 = t1 in

. . .

let xn = tn in t′[x 7→ (x1, . . . , xn)]

 . (D.15)

This is proved as follows; below, we insert [−] to indicate which evaluation context is used.

let x = ([t1], . . . , tn) in t′ =o

(
let x1 = t1 in

let x = ([x1], t2, . . . , tn) in t′

)

=

(
let x1 = t1 in

let x = (x1, [t2], . . . , tn) in t′

)
=o . . .

=o


let x1 = t1 in

. . .

let xn = tn in

let x = (x1, . . . , [xn]) in t′


=o

 let x1 = t1 in

. . .

let xn = tn in t′[x 7→ (x1, . . . , xn)]


Also, the equation below follows from the commuting conversion axiom:

cclet y = t in t′ =o let y = t in t′, (D.16)

which can be shown by a straightforward induction on t.
In addition to λc-calculus, we use the following reasoning principle, which we call referential transparency:

let x = t in C[x] = let x = t in C[t] (RT)

57

where the occurrence x in C[x] must be free (and bound by the let-declaration). Here we used a context C for C[x]
and C[t] rather than using a term t′ as t′ and t′[x 7→ t]; this means that any one occurrence of x in C[x] can be replaced
with t (and hence, by repeating it, so can all the occurrences of x, too). It is clear that (RT) is sound with respect to
the observational equivalence of our language.

The axiom (RT) allows us to regard a let-binding x R tb as “an equation already proved”. Below, for a context
C, we write t ≡ t′ in C to mean that C[t] =o C[t′]. For example, if x R tb, by (RT) it is true that x ≡ t in R
(though x and t themselves are not necessarily observationally equivalent). We sometimes omit the context C if it is
clear.

By (RT), we can prove the following equations:

Lemma 25. (1) For any term t,
pr1(t, . . . , t) =o t.

(2) For any term t of an n-tuple type,
t =o (pr1t, . . . ,prnt).

Proof. (1) pr1(t, t, t, . . . , t)

=o {by commuting conversion}
let x = t in pr1(x, t, t, . . . , t)

=o {(RT)}
let x = t in pr1(x, x, t, . . . , t)

=o . . .

=o let x = t in pr1(x, x, x, . . . , x)

=o let x = t in x

=o t .

(2) Similarly,

(pr1t,pr2t,pr3t, . . . ,prnt)

=o let x = t in (pr1x,pr2t,pr3t, . . . ,prnt)

=o let x = t in (pr1x,pr2x,pr3t, . . . ,prnt)

=o . . .

=o let x = t in (pr1x,pr2x,pr3x, . . . ,prnx)

=o let x = t in x

=o t .

Since (RT) is a global reasoning principle, it does not have the compositionality; however, the following lemma
recovers the compositionality under some restriction. For a context C—defined before Lemma 9—we define the set
BV (C) of binding variables of C as follows.

BV ([])
def
= ∅{

BV (if C then t1 else t2) , BV (if t then C else t2) , BV (if t then t1 else C)

BV (op(t̃, C, t̃)) , BV (C t2) , BV (t1 C) , BV ((t̃, C, t̃)) , BV (priC)

}
def
= BV (C)

BV (fix(f, λx.C))
def
= BV (C) ∪ {f, x}

Lemma 26. For a closed ground A-normal form t0 such that

(t0)lb −→∗N R[s]

58

and for any terms t, t′, and a context C such that

BV (R) ∩ BV (C) = ∅

and t, C[t], t′, and C[t′] have the same simple type,

t ≡ t′ in (R)
]′N
T,t0

implies C[t] ≡ C[t′] in (R)
]′N
T,t0

.

Proof. Now (R)
]′N
T,t0

is of the form

(R)
]′N
T,t0

= let x1 = V1 in . . . let xn = Vn in []

for some values Vi. Then,

t[xi 7→Vi]i =o (R)
]′N
T,t0

[t] =o (R)
]′N
T,t0

[t′] =o t′[xi 7→Vi]i

and hence

(R)
]′N
T,t0

[C[t]] =oC[t][xi 7→Vi]i

=o(C[xi 7→Vi]i)[t[xi 7→Vi]i]

=o(C[xi 7→Vi]i)[t
′[xi 7→Vi]i]

=oC[t′][xi 7→Vi]i

=o(R)
]′N
T,t0

[C[t′]].

Appendix D.4. Main lemma

The whole this subsection is devoted to the proof of the next lemma. Our goal, Lemma 21, can be proved easily
by the following lemma; i.e., in the case of t −→∗N R[(x1, . . . , xn)],

(t)
]′34
T =

(
(t)lb

)]′N
T,t

=o (R[(x1, . . . , xn)])
]′N
T,t =o (R[(x1, . . . , xn)])

]34
T =o (t)

]34
T ,

and the case of t −→∗N fail is similar.

Lemma 27. (1) For an A-normal form t and a multiplicity annotation T for t,

(t)
]′34
T =

(
(t)lb

)]′N
T,t

.

(2) For a closed ground A-normal form t and a multiplicity annotation T for t,

(t)lb −→∗N R[(x1, . . . , xn)]

implies
(R[(x1, . . . , xn)])

]34
T =o (R[(x1, . . . , xn)])

]′N
T,t .

(3) For a closed ground A-normal form t and a multiplicity annotation T for t,

(t)lb −→∗N s

implies

(t)
]34
T =o (s)

]34
T and

(
(t)lb

)]′N
T,t

=o (s)
]′N
T,t .

59

Proof. (1) The proof is almost the same as the proof of Lemma 23 - (3).
(2) Since R[(x1, . . . , xn)] is ground, xi are integer variables. Hence, for each i, there exists some integer mi

such that xi R mi
bi . Therefore, both (R[(x1, . . . , xn)])

]34
T and (R[(x1, . . . , xn)])

]′N
T,t are observationally equivalent

to (m1, . . . ,mn) by β-conversions, where the β-conversions are possible since all the top-level let-expressions in
(R)

]34
T [(x1, . . . , xn)] and (R)

]′N
T,t[(x1, . . . , xn)] bind variables by values.

(3) A proof on (−)
]34 is obvious after we prove the case of (−)

]′N . For the case of (−)
]′N , we prove a bit stronger

result: we prove that, for a closed ground A-normal form t0,

(t0)lb −→∗N s1 −→N s2 implies (s1)
]′N
T,t0

=o (s2)
]′N
T,t0

and moreover,

• if
s1 = R[let y = db1 in sb2] −→N R[let y = U b

′
1 in sb2]

where d = op(x1, . . . , xn) or prix, then in context (R)
]′N
T,t0

,

(d)
]′34
T,B

t0
b1

≡ (d)
]34
T ≡ (U)

]′34
T,B

t0
b′1

,

• and if

s1 = R[let y = (f (x̃i, g̃j))
b1 in sb2] −→N R[cclet y = s′

b′′
in sb2]

f R

(
fix(f, λ(x̃i, g̃j). s

′b′′)
)b′

then in context (R)
]′N
T,t0

,

(f (x̃i, g̃j))
]′34
T,B

t0
b1

≡ (f (x̃i, g̃j))
]34
T ≡ (s′)

]′N
T,t0

. (D.17)

We prove this by induction on the length of the N-reduction (t0)lb −→∗N s1 and by a case analysis on the redex of s1.
We show only the case of application, which is subtle since it involves InstVar(−); the other cases are obvious.

Since f R

(
fix(f, λ(x̃i, g̃j). s

′b′′)
)b′

, applying (−)
]′N
T,t0

,

f
(R)

]′
N

T,t0

(fix(f, λ(x̃i, g̃j). s
′))

]′34
T,B

t0
b′

= fix(f, λ(z1, . . . , zT (f)). (s
′
1, . . . , s

′
T (f))) (D.18)

where
s′k

def
= (s′)

]′34
T,B

t0
b′

[xi 7→prizk]i≤n[gj 7→ pzkj]j≤m

pzkj
def
= λy.prj((prn+1zk)(

−→
⊥
j−1

, y,
−→
⊥
m−j

)) .

Now,

(s1)
]′N
T,t0

= (R)
]′N
T,t0

[let y = (f (x̃i, g̃j))
]′34
T,B

t0
b1

in (s)
]′N
T,t0

],

(s2)
]′N
T,t0

= (R)
]′N
T,t0

[(
cclet y = s′

b′′
in sb2

)]′N
T,t0

]
= {by Lemma 22 - (4)}

(R)
]′N
T,t0

[
cclet y = (s′)

]′N
T,t0

in (s)
]′N
T,t0

]
=o {by (D.16)}

(R)
]′N
T,t0

[
let y = (s′)

]′N
T,t0

in (s)
]′N
T,t0

]
,

60

and hence, (s1)
]′N
T,t0

=o (s2)
]′N
T,t0

follows from (D.17) by Lemma 26 where C =
(
let y = [] in (s)

]′N
T,t0

)
.

In the context (R)
]′N
T,t0

,

(f (x̃i, g̃j))
]34
T

= pr1(f(
−−−−−−−−−−−−→
(x̃i, λỹj . (gj yj)j)

T (f)
))

≡ {by (D.18) and β-conversion}

pr1

((
s′k[zk 7→ (x̃i, λỹj . (gj yj)j)]

)
k≤T (f)

)
= pr1

((
(s′)

]′34
T,B

t0
b′

[xi 7→pri(x̃i, λỹj . (gj yj)j)]i≤n
[
gj 7→ pzkj [zk 7→ (x̃i, λỹj . (gj yj)j)]

]
j≤m

)
k≤T (f)

)
≡ pr1

((
(s′)

]′34
T,B

t0
b′

[
gj 7→ λy.prj((λỹj . (gj yj)j)(

−→
⊥ , y,

−→
⊥))

]
j

)
k≤T (f)

)
≡ pr1

((
(s′)

]′34
T,B

t0
b′

[gj 7→λy. gj y]j

)
k≤T (f)

)
≡ pr1

((
(s′)

]′34
T,B

t0
b′

)
k≤T (f)

)
≡ {by Lemma 25 - (1)}

(s′)
]′34
T,B

t0
b′

=
{
Bt0b′ = Bt0b′′ by Lemma 23 - (1) and Lemma 24 - (1), as explained below

}
(s′)

]′34
T,B

t0
b′′

= {by Lemma 23 - (3) and Lemma 24 - (1) as explained below}

(s′)
]′N
T,t0

.

Here, the last two equations above are shown as follows. We show only the latter equation; the former can be shown

similarly. Since f R

(
fix(f, λ(x̃i, g̃j). s

′b′′)
)b′

, the term fix(f, λ(x̃i, g̃j). s
′b′′) occurs in R and hence in s1. By

Lemma 24 - (1), fix(f, λ(x̃i, g̃j). s
′b′′) occurs in (t0)lb; hence, since s′b

′′
occurs in fix(f, λ(x̃i, g̃j). s

′b′′), so does in
(t0)lb. By applying Lemma 23 - (3) where we substitute (t0)lb and s′b

′′
for s0 and sb respectively, we obtain the last

equation above.
Hence, what remains for proving (D.17) is to show

(f (x̃i, g̃j))
]′34
T,B

t0
b1

≡ (f (x̃i, g̃j))
]34
T

in the context (R)
]′N
T,t0

.

First, let us recall the definition of (f(x̃i, g̃j))
]′34
T,B

t0
b1

:

(f(x1, ..., xn, g1, ..., gm))
]′34
T,B

t0
b1

def
= InstVar(f, T,Bt0b1 , tm+1)

where

t1
def
= pr1(f(

−−−−−−−−−−−−→
(x̃i, λỹj . (gj yj)j)

T (f)
))

tj+1
def
= InstVar(gj , T, B

t0
b1
, tj) (for j = 1, ...,m) .

From now, we will prove that, for each j = 1, . . . ,m+1,

InstVar(g, T,B, t) ≡ t

61

in the context (R)
]′N
T,t0

where

gm+1
def
= f, g

def
= gj , B

def
= Bt0b1 , t

def
= tj .

If we prove this, by applying this repeatedly for j = m+1, . . . , 1 (in the reverse order), we obtain

(f (x̃i, g̃j))
]′34
T,B

t0
b1

≡ t1 = (f (x̃i, g̃j))
]34
T .

Thus, our goal is to prove

(InstVar(g, T,B, t) =) let g =



λỹ. let x = g ỹ in

let z〈α
1〉 = B]g(α

1) in

· · ·
let z〈α

q〉 = B]g(α
q) in

assume (p) ; assume (p′) ;x


in t ≡ t . (D.19)

First, we transform the above equation to a more convenient form. By the definition of InstVar(−), there exist k
and z such that (g = prkz) ∈ B. Hence, there exist (x′1, . . . , x

′
n′ , f

′
1, . . . , f

′
m′) and b0 such that

z R (x′1, . . . , x
′
n′ , f

′
1, . . . , f

′
m′)

b0 , (D.20)

and by applying (−)
]′N
T,t0

, we have

z
(R)

]′
N

T,t0

(x̃′i, λ(y′1, ..., y
′
m′). (f

′
1 y
′
1, ..., f

′
m′ y

′
m′)) . (D.21)

For each j ≤ m′, since f ′j has a function type, there is
(
fix(f ′j , λx

′
j . s
′′
j
b′′′j)
)b′′j

such that

f ′j R|z

(
fix(f ′j , λx

′
j . s
′′
j
b′′′j)
)b′′j

. (D.22)

Then, applying (−)
]′N
T,t0

,

f ′j
(R|z)

]′
N

T,t0

(
fix(f ′j , λx

′
j . s
′′
j)
)]′34
T,B

t0
b′′
j

= fix(f ′j , λ(zj1, . . . , z
j
mj

). (tj1, . . . , t
j
mj

)) (D.23)

for some tji . Here, note that, by the definition in Figure 13, each tji does not contain variables zji′ for i′ 6= i, and “tji
do not depend on i”, precisely,

tji [z
j
i 7→ zji′] = tji′ . (D.24)

Also note that, as explained at (1) in Step]4 in Section 3.2, tji is of the form

tji = if zji = ⊥ then ⊥ else t̄ji

for some t̄ji . Hence,
uji = ⊥ implies tji [z

j
i 7→uji] =o ⊥. (D.25)

Now, since (g = pr→k z) ∈ B, by Lemma 24 - (4) with (D.20) and (D.22), in s1,

g R

(
fix(f ′k, λx

′
k. s
′′
k
b′′′k)
)b′′k

62

and by applying (−)
]′N
T,t0

to s1,

g
(R)

]′
N

T,t0

(fix(f ′k, λx
′
k. s
′′
k))

]′34
T,B

t0
b′′
k

= fix(f ′k, λ(zk1 , . . . , z
k
mk

). (tk1 , . . . , t
k
mk

)) . (D.26)

Let C be the following context:

C
def
= let g =



λỹ. let x = [] in

let z〈α
1〉 = B]g(α

1) in

· · ·
let z〈α

q〉 = B]g(α
q) in

assume (p) ; assume (p′) ;x


in t.

Then, in context (R)
]′N
T,t0

[C],(
g (y1, . . . , ymk)

)
≡ {(RT) on (D.26)}(

fix(f ′k, λ(zk1 , . . . , z
k
mk

). (tk1 , . . . , t
k
mk

)) (y1, . . . , ymk)
)

=o (tk1 [zk1 7→ y1][f ′k 7→fix(f ′k, λ(z̃ki). (t̃ki))], . . . , tkmk [zkmk 7→ ymk][f ′k 7→fix(f ′k, λ(z̃ki). (t̃ki))])

≡ {(RT) on (D.23)}
(tk1 [zk1 7→ y1], . . . , tkmk [zkmk 7→ ymk]).

(D.27)

Hence, by (D.15), the left hand side of (D.19) is equivalent (≡ in (R)
]′N
T,t0

) to the following:

t′
def
= let g =



λỹ. let x1 = tk1 [zk1 7→ y1] in

. . .

let xmk = tkmk [zkmk 7→ ymk] in

let z〈α
1〉 = B]g(α

1) in

· · ·
let z〈α

q〉 = B]g(α
q) in

assume (p) ; assume (p′) ; (x1, . . . , xmk)


in t . (D.28)

From now, we prove that B]g(α
l) (l = 1, . . . , q) in t′ can be replaced with values, and then prove that p and p′ are

satisfied and hence assume (p) and assume (p′) can be removed. If these are proved, we can prove (D.19) as
follows:

t′

≡ {to be proved}

let g =

λỹ. let x1 = tk1 [zk1 7→ y1] in

. . .

let xmk = tkmk [zkmk 7→ ymk] in (x1, . . . , xmk)

 in t

=o let g = λỹ. (tk1 [zk1 7→ y1], . . . , tkmk [zkmk 7→ ymk]) in t

≡ {the same as (D.27) (context is a bit different, but essentially the same)}
let g = λỹ. g ỹ in t

=o t

63

Recall that p and p′ are defined in Step 5 in Section 4.3 by using z〈(αj)j〉, and B]g((αj)j) is defined in Step 4 as

B]g((αj)j)
def
= (pr]→z)(arg

∗
1α1, . . . , arg

∗
mαm) ,

where, by (3), pr]→z has the following type for some m′, τj , τ ′j , and mj = T (pr→j z):

pr]→z :
m′∏
j=1

(
(τj)

]′34
)mj → m′∏

j=1

((
τ ′j
)]′34)(mj)

[·7→·] .

Note that the equality == and the implication => used in p and p′ are not genuine logical operators but boolean
primitives, so if two terms t1 and t2 both diverge (or fail), then t1 == t2 is not true but divergence (or fail), and
assume (. . . t1 == t2 . . .) cannot necessarily be removed. Thus, it is important to know if such t1 and t2 are values
or not. In the current case, since arg∗j (αj) and z〈(αj)j〉 are values, this concern is in fact cleared.

To calculate p and p′, we substitute B]g((αj)j) for z〈(αj)j〉 in p and p′, and to do so we show that B]g((αj)j) is
interchangeable (in the sense of ≡) with a value. From now, we calculate a concrete form of B]g((αj)j) in the context

(R)
]′N
T,t0

.

For a given α = (αj)j ∈
m∏
j=1

App∗j , for each j, let αj and arg∗j (αj) be of the forms (aji)i≤mj and (uji)i≤mj ,

respectively, where uji = argj(a
j
i) by definition. Note that uji is a variable or ⊥, and hence is a value. In (R)

]′N
T,t0

,

B]g((αj)j) = (pr]→z) ((u1i)i, . . . , (u
m
i)i)

≡ {(RT) on (D.21)}(
pr]→

(
x̃′i, λ(y′1, ..., y

′
m′). (f

′
1 y
′
1, ..., f

′
m′ y

′
m′)
))

((u1i)i, . . . , (u
m
i)i)

=o

(
λ(y′1, ..., y

′
m′). (f

′
1 y
′
1, ..., f

′
m′ y

′
m′)
)

((u1i)i, . . . , (u
m
i)i)

=o {(∗) A remark is given below.}(
f ′1 (u1i)i, . . . , f

′
m′ (u

m′

i)i
)

≡
(
(t11, . . . , t

1
m1

)[z1i 7→u1i]i, . . . , (t
m′

1 , . . . , tm
′

mm′
)[zm

′

i 7→um
′

i]i
)

≡
(
(t11[z11 7→u11], . . . , t1m1 [z1m1 7→u1m1]), . . . , (tm

′

1 [zm
′

1 7→um
′

1], . . . , tm
′

mm′
[zm

′

mm′
7→um

′

mm′
])
)
.

On the equation marked by (∗), as explained at (1) in Step]4 in Section 3.2, the term f ′j y
′
j in (D.21) is precisely

if y′j = ⊥ then ⊥ else f ′j y
′
j .

However, now the j-th argument (uji)i is a tuple and hence not ⊥; hence, the above is equivalent to f ′j y
′
j in this case.

For each j ≤ m, and i ≤ mj , we define a value V αj,i as the following.

V αj,i
def
=


⊥ (aji = (⊥, v))

xl (aji = yl)

w (aji = (u, v, w))

From now, we show that
tji [z

j
i 7→uji] ≡ V αj,i

by a case analysis on aji . Let t′′ be a term obtained by replacing every B]g(α) in t′ (given in (D.28)) with a matrix
((tji [z

j
i 7→uji])i)j , and let C ′ be a context obtained by replacing one component of one of the matrices in t′′ with [].

In the following case analysis, we use ≡ in this context (R)
]′N
T,t0

[C ′] if we do not mention contexts.

64

aji = (⊥, v) This case is trivial: since now uji = argj(a
j
i) = ⊥, by (D.25),

tji [z
j
i 7→uji] =o ⊥ = V αj,i .

aji = yl (l ≤ mj) In this case, j must be k, and uki = argk(aki) = yl. Then,

tki [zki 7→ yl] = {by (D.24)}
tkl [zkl 7→ yl]

≡ {(RT)}
xl

= V αj,i .

aji = (u, v, w) This case is long. In this case, by the definition of App′j in Step 2 in Section 4.3, we have

(v = pr→j z), (w = v u) ∈ B, depth(v) = 1 .

Since (v = pr→j z) ∈ B, by Lemma 24 - (4) with (D.20) and (D.22), in s1,

v R

(
fix(f ′j , λx

′
j . s
′′
j
b′′′j)
)b′′j

and by applying (−)
]′N
T,t0

to s1,

v
(R)

]′
N

T,t0

(
fix(f ′j , λx

′
j . s
′′
j)
)]′34
T,B

t0
b′′
j

= fix(f ′j , λ(zj1, . . . , z
j
mj

). (tj1, . . . , t
j
mj

)) . (D.29)

Next, since (w = v u) ∈ B, by Lemma 24 - (4), there exist b′1, b′2, s′0, and R′ such that

(t0)lb −→∗N R′[let w = (v u)
b′1 in s′0

b′2]

−→N R′[cclet w = (s′′j [x′j 7→u][f ′j 7→ v])
b′′′j in s′0

b′2]

−→∗N s1

By induction hypothesis, in (R′)
]′N
T,t0

,

(v u)
]34
T ≡

(
s′′j [x′j 7→u][f ′j 7→ v]

)]′N
T,t0

.

Now, given the following situation

R′[s′′j [x′j 7→u][f ′j 7→ v]] −→∗N R′[R0[r]] −→N R′[R0[sr]],

where r is the redex of R′[R0[r]], we show that, in (R′)
]′N
T,t0

,

(R0[r])
]′N
T,t0
≡ (R0[sr])

]′N
T,t0

.

If this is proved, for the N-normal form R′[R′′[z̃′]] of R′[s′′j [x′j 7→u][f ′j 7→ v]], we have

(v u)
]34
T ≡

(
R′′[z̃′]

)]′N
T,t0

(D.30)

65

in (R′)
]′N
T,t0

.
If r is of the form if xr then sr1

br1 else sr2
br2 , and if

xr R′[R0] true

(the case of false is similar), in (R′[R0])
]′N
T,t0

,

(r)
]′N
T,t0

= if xr then (sr1)
]′N
T,t0

else (sr2)
]′N
T,t0

≡
{

by (RT), applying (−)
]′N
T,t0

to xr R′[R0] true
}

if true then (sr1)
]′N
T,t0

else (sr2)
]′N
T,t0

=o (sr1)
]′N
T,t0

.

If r is of the form let yr = drb
r
1 in sr2

br2 where dr is of the form op(x̃r) or prix
r, there exists Urb

r

such that

R′[R0[let yr = drb
r
1 in sr2

br2]] −→N R′[R0[let yr = Urb
r

in sr2
br2]]

and

(t0)lb −→∗N R′[cclet w = (s′′j [x′j 7→u][f ′j 7→ v])
b′′′j in s′0

b′2]

−→n′

N R′[cclet w = R0[let yr = drb
r
1 in sr2

br2]
b′′′j

in s′0
b′2]

= {by Lemma 22 - (1)}

R′[R0[cclet w = (let yr = drb
r
1 in sr2

br2)
b′′′j

in s′0
b′2]]

= R′[R0[let yr = drb
r
1 in (cclet w = sr2

b′′′j in s′0
b′2)

br2
]]


−→N {by Lemma 22 - (3)}

R′[cclet w = R0[let yr = Urb
r

in sr2
br2]

b′′′j
in s′0

b′2]

= {by Lemma 22 - (1)}

R′[R0[let yr = Urb
r

in (cclet w = sr2
b′′′j in s′0

b′2)
br2

]].

Since

R′[R0[let yr = drb
r
1 in (cclet w = sr2

b′′′j in s′0
b′2)

br2
]]

−→N R′[R0[let yr = Urb
r

in (cclet w = sr2
b′′′j in s′0

b′2)
br2

]],

by induction hypothesis, in (R′[R0])
]′N
T,t0

,

(dr)
]′34
T,B

t0
br1

≡ (Ur)
]′34
T,B

t0
br
,

and by Lemma 26, in (R′[R0])
]′N
T,t0

,(
let yr = drb

r
1 in sr2

br2
)]′N
T,t0
≡
(
let yr = Urb

r

in sr2
br2
)]′N
T,t0

.

If r is of the form let yr = (fr (x̃ri , g̃
r
j))

br1
in sr2

br2 , there exists srb
r

such that

R′[R0[let yr = (fr (x̃ri , g̃
r
j))

br1
in sr2

br2]] −→N R′[R0[cclet yr = srb
r

in sr2
br2]]

66

and

(t0)lb −→∗N R′[cclet w = (s′′j [x′j 7→u][f ′j 7→ v])
b′′′j in s′0

b′2]

−→n′

N R′[cclet w = R0[let yr = (fr (x̃ri , g̃
r
j))

br1
in sr2

br2]
b′′′j

in s′0
b′2]= {by Lemma 22 - (1)}

R′[R0[let yr = (fr (x̃ri , g̃
r
j))

br1
in (cclet w = sr2

b′′′j in s′0
b′2)

br2
]]


−→N {by Lemma 22 - (3)}

R′[cclet w = R0[cclet yr = srb
r

in sr2
br2]

b′′′j
in s′0

b′2]

= R′[R0[cclet w = (cclet yr = srb
r

in sr2
br2)

b′′′j
in s′0

b′2]]

= {by Lemma 22 - (2)}

R′[R0[cclet yr = srb
r

in (cclet w = sr2
b′′′j in s′0

b′2)
br2

]].

Since

R′[R0[let yr = (fr (x̃ri , g̃
r
j))

br1
in (cclet w = sr2

b′′′j in s′0
b′2)

br2
]]

−→N R′[R0[cclet yr = srb
r

in (cclet w = sr2
b′′′j in s′0

b′2)
br2

]],

by induction hypothesis, in (R′[R0])
]′N
T,t0

, (
fr (x̃ri , g̃

r
j)
)]′34
T,B

t0
br1

≡ (sr)
]′N
T,t0

,

and by Lemma 26, in (R′[R0])
]′N
T,t0

,(
let yr = (fr (x̃ri , g̃

r
j))

br1
in sr2

br2
)]′N
T,t0
≡
(
cclet yr = srb

r

in sr2
br2
)]′N
T,t0

.

In (R′)
]′N
T,t0

,

(R′′)
]′N
T,t0

[(v u)
]34
T]

≡ {by (D.30) and Lemma 26}

(R′′)
]′N
T,t0

[(R′′)
]′N
T,t0

[
(
z̃′
)]′N
T,t0

]]

=o {by β-conversion}

(R′′)
]′N
T,t0

[
(
z̃′
)]′N
T,t0

].

Since R = R′[R′′[R′′′]] for some R′′′, by Lemma 26, in (R)
]′N
T,t0

[C ′]

(v u)
]34
T ≡

(
z̃′
)]′N
T,t0

. (D.31)

Now, by Lemma 22 - (3), we have

(t0)lb −→∗N R′[cclet w = (s′′j [x′j 7→u][f ′j 7→ v])
b′′′j in s′0

b′2]

−→∗N R′[cclet w = R′′[z̃′]
b′′′j

in s′0
b′2]

= R′[R′′[let w = z̃′
b′′′j

in s′0
b′2]]

−→∗N s1.

67

Hence,

w R z̃′
b′′′j
.

and by applying (−)
]′N
T,t0

,

w
(R)

]′
N

T,t0

(
z̃′
)]′N
T,t0

. (D.32)

Finally, we have

tji [z
j
i 7→uji]

=
{

since now uji = argj(a
j
i) = u

}
tji [z

j
i 7→u]

≡{by Lemma 25 - (1)}
pr1(tji [z

j
i 7→u], . . . , tji [z

j
i 7→u])

= {by (D.24)}
pr1(tj1[zj1 7→u], . . . , tjmj [zjmj 7→u])

≡{(RT) on (D.23)}

pr1(tj1[zj1 7→u][f ′j 7→fix(f ′j , λ(z̃ji). (t̃
j
i))], . . . , t

j
mj

[zjmj 7→u][f ′j 7→fix(f ′j , λ(z̃ji). (t̃
j
i))])

≡ pr1
(
fix(f ′j , λ(zj1, . . . , z

j
mj

). (tj1, . . . , t
j
mj

)) (−→u mj)
)

≡{(RT) on (D.29)}
pr1
(
v (−→u mj)

)
= (v u)

]34
T

≡{by (D.31)}(
z̃′
)]′N
T,t0

≡{by (D.32)}
w

= V αj,i .

Note that, from the above, we have

V αj,i ≡ pr1
(
v (−→u mj)

)
≡ tji [z

j
i 7→u]. (D.33)

Thus, we have proved that B]g(α) (≡ ((tji [z
j
i 7→uji])i)j) can be replaced with the value ((V αj,i)i)j and we can sub-

stitute ((V α
l

j,i)i)j for z〈α
l
j)j〉 in assume (p) and assume (p′). Finally, we prove that p and p′ (after the substitution)

are satisfied.
On assume (p), we show that for α = (αj)j , α

′ = (α′j)j ∈
∏
j≤m′ App

∗
j and j ≤ m′ such that fun∗j (αj) =

fun∗j (α
′
j), (

arg∗j (αj) == arg∗j (α
′
j) => (V αj,i)i == (V α

′

j,i)i

)
≡ true.

Suppose that arg∗j (αj), arg∗j (α
′
j), α, and α′ are of the following forms:

arg∗j (αj) = (uji)i arg∗j (α
′
j) = (u′

j
i)i α = ((aji)i)j α′ = ((a′

j
i)i)j .

It is enough to show that for each i, (
uji == u

′j
i => V αj,i == V

α′

j,i

)
≡ true.

68

We show this by a case analysis on aji and a′ji .

aji = (⊥, v) (a′ji is arbitrary) If u′ji 6= ⊥, (uji == u
′j
i) =o false.

If u′ji = ⊥, V αj,i = ⊥ = V α
′

j,i , and (V αj,i == V
α′

j,i) =o true.

aji = yl, a
′j
i = yl′ In this case, j = k, and we have

(uki == u
′k
i => V αk,i == V

α′

k,i)

= (yl == yl′ => xl == xl′)

≡ {by (RT) on xl and xl′}
(yl == yl′ => tkl [zkl 7→ yl] == t

k
l′ [z

k
l′ 7→ yl′])

=o true,

where the last equation is shown as follows.
Let C ′′ be the context obtained by replacing the occurrence of

(uji == u
′j
i => V αj,i == V

α′

j,i)

in 

let x1 = tk1 [zk1 7→ y1] in

. . .

let xmk = tkmk [zkmk 7→ ymk] in

assume
(
p[z〈α

l〉 7→ ((V α
l

j,i)i)j]l≤q

)
;

assume
(
p′[z〈α

l〉 7→ ((V α
l

j,i)i)j]l≤q

)
; (x1, . . . , xmk)


with []. From now we show that

λỹ. C ′′[(yl == yl′ => tkl [zkl 7→ yl] == t
k
l′ [z

k
l′ 7→ yl′])] =o λỹ. C ′′[true].

By extensionality of the observational equivalence, it is enough to show that for any closed values Ṽ ,

C ′′[yi 7→Vi]i≤mk [(Vl == Vl′ => tkl [zkl 7→Vl] == t
k
l′ [z

k
l′ 7→Vl′])] =o C ′′[yi 7→Vi]i≤mk [true].

Note that, by the definition of Appj , depth(g) = 1, and hence Vi are ground values. If Vl 6= Vl′ , then

(Vl == Vl′) =o false

and hence
(Vl == Vl′ => tkl [zkl 7→Vl] == t

k
l′ [z

k
l′ 7→Vl′]) =o true.

If Vl = Vl′ , then

C ′′[yi 7→Vi]i≤mk [(Vl == Vl′ => tkl [zkl 7→Vl] == t
k
l′ [z

k
l′ 7→Vl′])]

= C ′′[yi 7→Vi]i≤mk [(Vl == Vl => tkl [zkl 7→Vl] == t
k
l′ [z

k
l′ 7→Vl])]

= {by (D.24)}
C ′′[yi 7→Vi]i≤mk [(Vl == Vl => tkl [zkl 7→Vl] == t

k
l [zkl 7→Vl])]

=o {(RT) on xl}
C ′′[yi 7→Vi]i≤mk [(Vl == Vl => xl == xl)]

=o {(xl == xl) =o true as explained below.}
C ′′[yi 7→Vi]i≤mk [(Vl == Vl => true)]

=o C
′′[yi 7→Vi]i≤mk [true].

69

Above, (xl == xl) =o true is obtained by the extensionality of the observational equivalence, as (V == V) =o true
for any closed value V .

aji = (u, v, w), a′
j
i = yl This case is almost the same as the previous case. In this case, j = k, and we have

(uki == u
′k
i => V αk,i == V

α′

k,i)

= (u == yl => w == xl)

≡ {by (D.33) and by (RT) on xl}
(u == yl => tki [zki 7→u] == tkl [zkl 7→ yl])

=o true,

where the last equation is shown as follows.
Let C ′′ be the context defined in the same way as above. From now we show that

λỹ. C ′′[(u == yl => tki [zki 7→u] == tkl [zkl 7→ yl])] =o λỹ. C ′′[true].

Similarly to the previous case, it is enough to show that for any values Ṽ ,

C ′′[yi 7→Vi]i≤mk [(u == Vl => tki [zki 7→u] == tkl [zkl 7→Vl])] =o C ′′[yi 7→Vi]i≤mk [true].

If u 6= Vl, then (u == Vl) =o false and hence

(u == Vl => tki [zki 7→u] == tkl [zkl 7→Vl]) =o true.

If u = Vl, then

C ′′[yi 7→Vi]i≤mk [(u == Vl => tki [zki 7→u] == tkl [zkl 7→Vl])]

= C ′′[yi 7→Vi]i≤mk [(Vl == Vl => tki [zki 7→Vl] == t
k
l [zkl 7→Vl])]

= {by (D.24)}
C ′′[yi 7→Vi]i≤mk [(Vl == Vl => tkl [zkl 7→Vl] == t

k
l [zkl 7→Vl])]

=o {(RT) on xl}
C ′′[yi 7→Vi]i≤mk [(Vl == Vl => xl == xl)]

=o {similarly to the previous case}
C ′′[yi 7→Vi]i≤mk [true].

aji = (u, v, w), a′
j
i = (u′, v′, w′) Since fun∗j (αj) = fun∗j (α

′
j), v = v′. Now there exist ground values V and V ′

such that
u

(R)
]′
N

T,t0

V

u′
(R)

]′
N

T,t0

V ′ .
(D.34)

Then,

(uki == u
′k
i => V αk,i == V

α′

k,i)

= (u == u′ => w == w′)

≡ {by (D.33)}

(u == u′ => pr1
(
v (−→u mj)

)
== pr1

(
v (
−→
u′

mj

)
)
)

≡ {(RT) on (D.34)}

(V == V ′ => pr1
(
v (
−→
V

mj
)
)
== pr1

(
v (
−→
V ′

mj

)
)
).

70

If V 6= V ′, then (V == V ′) =o false and hence

(V == V ′ => pr1
(
v (
−→
V

mj
)
)
== pr1

(
v (
−→
V ′

mj

)
)
)

=o true.

If V = V ′, then

(V == V ′ => pr1
(
v (
−→
V

mj
)
)
== pr1

(
v (
−→
V ′

mj

)
)
)

= (V == V => pr1
(
v (
−→
V

mj
)
)
== pr1

(
v (
−→
V

mj
)
)
)

≡ {(RT) on (D.34)}
(V == V => pr1

(
v (−→u mj)

)
== pr1

(
v (−→u mj)

)
)

≡ {by (D.33)}
(V == V => w == w)

=o

{
similarly to the case that aji = yl and a′ji = yl′

}
true.

By the symmetry of α and α′, now all the cases have been completed.
On assume (p′), we show that for α = (αj)j ∈

∏
j≤m App∗j , j ≤ m, i ≤ mj , and u, v, w such that πiαj =

(u, v, w),
(w == V αj,i) ≡ true.

This is trivial: now V αj,i = w, and hence

(w == V αj,i) = (w == w) =o true.

71

