Verifying Relational Properties of
Functional Programs by First-Order Refinement

Kazuyuki Asada

Ryosuke Sato

Naoki Kobayashi

University of Tokyo
{asada,ryosuke,koba}@kb.is.s.u-tokyo.ac.jp

Abstract

Much progress has been made recently on fully automated verifica-
tion of higher-order functional programs, based on refinement types
and higher-order model checking. Most of those verification tech-
niques are, however, based on first-order refinement types, hence
unable to verify certain properties of functions (such as the equal-
ity of two recursive functions and the monotonicity of a function,
which we call relational properties). To relax this limitation, we
introduce a restricted form of higher-order refinement types where
refinement predicates can refer to functions, and formalize a sys-
tematic program transformation to reduce type checking/inference
for higher-order refinement types to that for first-order refinement
types, so that the latter can be automatically solved by using an
existing software model checker. We also prove the soundness of
the transformation, and report on preliminary implementation and
experiments.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Automated verification, Higher-order functional lan-
guage, Refinement types

1. Introduction

There has been much progress in automated verification techniques
for higher-order functional programs [10, 12-14, 17, 18, 20].1
Most of those techniques abstract programs by using first-order
predicates on base values (such as integers), due to the limitation
of underlying theorem provers and predicate discovery procedures.
For example, consider the program:
let rec sum n =
if n<0 then 0 else n+sum(n-1).

Using the existing techniques [10, 13, 17, 18], one can ver-
ify that sum has the first-order refinement type: (n : int) —
{m :int | m > n}, which means that sum n returns a value no
less than n. Here, {m : int | P(m)} is the (refinement) type of
integers m that satisfy P(m).

Due to the restriction to the first-order predicates, however, it
is difficult to reason about what we call relational properties, such
as the relationship between two functions, and the relationship be-
tween two invocations of a function. For example, consider another
version of the sum function:

Un the present paper, by automated verification, we mean (almost) fully
automated one, where a tool can automatically verify a given program
satisfies a given specification (expressed either in the form of assertions
or refinement type declarations), without requiring invariant annotations
(such as pre/post conditions for each function). It should be contrasted
with refinement type checkers [4, 21] where a user must declare refinement
types for all recursive functions including auxiliary functions. Some of the
automated verification techniques above require a hint [20], however.

let rec sumacc n m =
if n<0 then m else sumacc (n-1) (m+n)
and sum2 n = sumacc n 0

Suppose we wish to check that sum2(n) equals sum(n) for every
integer n. With general refinement types [7], that would amount to
checking that sumacc and sum2 have the following types:*

sumacc : (n:int) = (m: int) — {r : int | r = m + sum(n)}
sum?2 : (n:int) — {r: int | r = sum(n)}

The type of sum2 means that sum2 takes an integer as an argument
and returns an integer r that equals the value of sum(n). With
the first-order refinement types, however, sum cannot be used in
predicates, so the only way to prove that sum2(n) equals sum(n)
would be to verify precise input/output behaviors of the functions:

sum, sum?2 : (n : int) —
{r:int|(n>0Ar=nn+1)/2)V(n<0AT=0)}

Since this involves non-linear and disjunctive predicates, auto-
mated verification (which involves automated synthesis of the pred-
icates above) is difficult. In fact, most of the recent automated ver-
ification tools do not deal with non-linear arithmetic.

Actually, with the first-order refinement types, there is a diffi-
culty even with the “trivial” property that sum satisfies sum z =
z + sum (z — 1) for every = > 0. This is almost the definition
of the sum function, and it can be expressed and verified using the
general refinement type:

sum: {f:int —»int |Vz.2 > 0= f(z) =z + f(z —1)}.

Yet, with the restriction to first-order refinement types, one would
need to infer the precise input/output behavior of sum (i.e., that
sum(z) returns z(z + 1)/2).

We face even more difficulties when dealing with higher-order
functions. Consider the program in Figure 1. Here, a list is encoded
as a function that maps each index to the corresponding element
(or None if the index is out of bounds) [14], and the append func-
tion is defined. Suppose that we wish to verify that append xs
nil = xs. With general refinement types, the property would be
expressed by:

append : (z : int — int option) —
{y : int — int option | y(0) = None}—

{r : int — int option | r =z}

2 As defined later, a formula ¢ = ts in a refinement type means that if both
t1 and t2 evaluate to (base) values, then the values are equivalent.

3 Another way would be to use uninterpreted function symbols, but for that
purpose, one would first need to check that sum is total.

let nil i = None in
let tl xs = fun i-> xs(i+1l) in
let cons x xs =
fun 1 -> if i=0 then Some (x) else xs(i-1) in
let rec append xs ys =
match xs(0) with None -> ys
| Some (x) —-> let xs’ = tl xs in
cons x (append xs’ ys)

Figure 1. Append function for functional encoding of lists

(where r = x means the extensional equality of functions r and x)
but one cannot directly express and verify the same property using
first-order refinement types.

To overcome the problems above, we allow* programmers to
specify (a restricted form of) general refinement types in source
programs. For example, they can declare

sum2: (n:int) — {r:int | r = sum(n)}
append: (z:int — int option) —
{y : int — int option | y(0) = None}—
{r :int — int option | Vi.r(i) = z(i)}.

To take advantage of the recent advance of verification techniques
based on first-order refinement types, however, we employ auto-
mated program transformation, so that the resulting program can
be verified by using only first-order refinement types. The key idea
of the transformation is to apply a kind of tupling transformation [5]
to capture the relationship between two (or more) function calls at
the level of first-order refinement. For example, for the sum pro-
gram above, one can apply the standard tupling transformation (to
combine two functions sum and sumacc into one) and obtain:

let rec sum_sumacc (n, m) =
if n<0 then (0,m) else
let (rl,r2)=sum_sumacc (n-1, m+n) in
(rl+n, r2)

Checking the equivalence of sum and sum2 then amounts to
checking that sum_sumacc has the following first-order refine-
ment type:

((n,m) :int x int) — {(r1,r2) : int X int | r2 = r1 + m}.

The transformation for append is more involved: because the
return type of the append function refers to the first argument, the
append function is modified so that it returns a pair consisting of
the first argument and the result:

let append2 xs ys = (xs, append XS yS).

Then, append?2 is further transformed to append3 below, ob-
tained by replacing (xs, append xs ys) with its tupled ver-
sion.

let append3 xs ys (i, J)
(xs (1), append xs ys 7J).

The required property append xs nil = xs is then verified
by checking that append3 has the following first-order refinement
type TappendB:

(z : int — int option) —

(y : ((z : int) — {r : int option | z = 0 = r = None})) —

((4,7) : int x int) = {(r1,72) : int X int | i = j = r1 = r2}.

The transformation sketched above has allowed us to express
the external behavior of the append function by using first-order

4 But programmers are not obliged to specify types for all functions. In fact,
for the example of sum2, no declaration is required for the function sum.

refinement types. With the transformation alone, however, the first-
order refinement type checking does not succeed: For reasoning
about the internal behavior of append, we need information about
the relation between the two function calls xs (1) and append
xs ys J, which cannot be expressed by first order refinement
types. As already mentioned, with the restriction to first-order re-
finement types, the relationship between the return values of the
two calls can only be obtained by relating the input/output rela-
tions of functions xs and append. To avoid that limitation, we
further transform the program, by inlining append and tupling the
two calls of the body of append3:

let append4 xs ys (i,3) =
match xs(0) with None -> nil2 (i,)

| Some (x) —>
let xs’ = tl xs in
let xszs’ = append4 xs’ ys in
let xszs’’ = cons2 X x xszs’ in

xszs’’ (i,73)

Here, nil2 and cons2 x x xszs’ are respectively tupled
versions of (nil,nil) and (cons x xs’, cons x zs'),
where xszs”’ is a tupled one of xs’ and zs’.

At last, it can automatically be proved that append4 has type
Tappenas. (To clarify the ideas, we have over-simplified the trans-
formation above. The actual output of the automatic transformation
formalized later is more complicated.)

We formalize the idea sketched above and prove the soundness
of the transformation. We also report on a prototype implementa-
tion of the approach as an extension to the software model checker
MoCHi [10, 14] for a subset of OCaml. The implementation takes
a program and its specification (in the form of refinement types)
as input, and verifies them automatically (without invariant annota-
tions for auxiliary functions) by applying the above transformations
and calling MoCHi as a backend.

The rest of the paper is organized as follows. Section 2 in-
troduces the source language. Section 3 presents the basic trans-
formation for reducing the (restricted form of) general refinement
type checking problem to the first-order refinement type checking
problem. Roughly, this transformation corresponds to the one from
append to append3 above. As mentioned above, the basic trans-
formation alone is not sufficient for automated verification via first-
order refinement types; we therefore improve the transformation in
Section 4 (which roughly corresponds to the transformation from
append3 to append4 above). Section 5 reports on experiments
and Section 6 discusses related work. We conclude the paper in
Section 7.

2. Source Language

This section formalizes the source language and the verification
problem.

2.1 Source Language

The source language, used as the target of our verification method,
is a simply-typed, call-by-value, higher-order functional language
with recursion. The syntax of terms is given by:

t (terms) ==z | n | op(t1,...,tn) | if t then t; else t2
| fix(f, Ax.t) | tita | (t1,...,tn) | pr;t | fail
We use meta-variables x, y, 2, . . ., f, g, h, .. ., and v for variables.

We have only integers as base values, which are denoted by the
meta-variable n. The term op(t) (where ¢ denotes a sequence of
expressions) applies the primitive operation op on integers to ¢.
We assume that we have the equality operator = as a primitive
operation. We express Booleans by integers, and write true for

V (value)
A (answer)

FE (eval. ctx.) ::

s=n | fix(f, Az.t) | (Vi,...,V,)
=V |fail
=[]|op(V,E t) | if E then ¢, else o
|Et|VE|(V,E) |pr,E
Elop(ni,...,nk)] — E[Jop](n1,...,n)]
E[fail] — fail
EJ[if true then t; else t2] — Et1]
E[if V then t; else t;] — Et2](V # true)
Elfix(f, A\z.t)V] — E[t[f — fix(f, Az. t)][z — V]]
[pr

E[pr,(V1,...,Vs)] — E[Vi]

Figure 2. Operational semantics of the source language

1, and false for 0. The term fix(f, Axz.t) denotes the recursive
function defined by f = Axz.t. When f does not occur in ¢, we
write Az.t for fix(f, A\x.t). The term t¢1t2 applies the function
t1 to t2. We write let z = ¢ in ¢’ for (Az.t')t, and write also
t;t' for it when z does not occur in #'. The terms (t1,...,tn)
and pr;t respectively construct and destruct tuples. The special
term fail aborts the execution. It is typically used to express as-
sertions; assert(¢), which asserts that ¢ should evaluate to true,
is expressed by if ¢ then true else fail. We call a closed term a
program. We often write ¢ for a sequence ti, ..., tn.

For the sake of simplicity, we assume that tuple constructors
occur only in the outermost position or in the argument positions
of function calls in source programs. We also assume that all the
programs are simply-typed below (where fail can have every type).

The small-step semantics is shown in Figure 2. In the figure,
[op] is the integer operation denoted by op. We write —* for
the reflexive and transitive closure of —, and ¢ —* ' if ¢ is
reduced to ¢’ in k steps. We write ¢ 1 if there is an infinite reduction
sequence t — t1 — to — ---. By the assumption that a
program is simply-typed, for every program ¢, either ¢ evaluates to
an answer (i.e., t —™ V ort —™ fail) or diverges (i.e., t T).

We express the specification of a program by using refinement
types. The syntax of refinement types is given by:

7 (types) == p | {v:[]i, (zizpi) | P}
p (non-tuple types) == {v:int | P} |{v: (z: 1) — 1| P}
P (predicates) ::=t| P AP |Vx.P

where we have used a notational convention []?_, (x:: pi) to de-
note (z1: p1) X+ - X (Tn—1: pn—1) X py, (thus, the variable =, actu-
ally does not occur). The type (z: p1) X p2 is a dependent sum type,
where x may occur in p2, and (z: 71) — 72 is a dependent product
type, where may occur in 2. We use a metavariable o to denote
int, (z:71) — 72, or [[}, (x:: ps). Intuitively, a refinement type
{v : o | P} describes a value v of type o that satisfies the refine-
ment predicate P. For example, {v : int | v > 0} describes a pos-
itive integer. The type {f : int — int | Vz,y. 2 <y => f(x) <
f(y)} describes a monotonic function on integers.

A refinement predicate P can be constructed from expressions
and top-level logical connectives Va and A, where x ranges over
integers. The other logical connectives can be expressed by using
expression-level Boolean primitives, but their semantics is subtle
due to the presence of effects (non-termination and abort) of ex-
pressions, as discussed later in Section 2.2.

We often write just o for {x : o | true}; 7 — 72 for (x : 71)—
T2, and p1 X p2 for (z:p1) X p2 if x is not important; 7™ for
T X -+ x 7 (the m-th power); {(vi)ien : I}, (zizpi) | P} for
{V [T, (@i pe) ’ Plyi—priv,... vy Hprny]}; and VZ.P
forVey,...,zn.P

’(Predicate) Ep C{P: closed}‘

* =y V. Pg':p

* |=p P1/\P2<g>|:p Pand |} Py

def

e pt
I(Value) 7, Ev C{V :closed} x {7 : closed}‘
e =t V:i{rv:io|P} <= ElV:0cand [}
e =0V :int £V = m for some integer m

eEIVi(z1:im) o A forall n/ < nand Vi,
=2 Vi : o implies =2 VV; 7 [x1— V1]

n n def
L4 'ZV (Vl,...,Vn) : Hi:l (.’L’l : Pz) <
':\7,1 Vi pi[l‘ﬂ—)‘/h...,l‘ifli—)vifl] for all ¢ <n

P[xz+— m)] for all integers m

=trueforall Aandk <nstt —"A

L Plv—V]

def

o= Vit E}V:rforaln
[(Term) =c, =& C {t : closed} x {r : closed}]
° ':?t
o =t <d:°f>|: t:7foralln
(<= kv A:7foral Ast.t —" A)

et ES ETFArforall Aandk < nstt —F A

Figure 3. Semantics of types

For a type T we define the simple type ST(7) of T as follows:
ST({v: o | P}) = ST(0) ST(int) = int
ST((z : 71) = 72) = ST(71) — ST(72)
ST((z : 71) X T2) = ST(11) X ST(72)
Also, we define the order of T by:

order({v : o | P}) = order(o) order(int) =0
order((z : 1) = 12) = max(order(m1) + 1, order(72))
order((z : T1) X T2) = max(order(m), order(72)).

The syntax of types is subject to the usual scope rule; in (z: p1) X p2
and (x: T1) — T2, the scope of z is p2 and T2 respectively. Further-
more, we require that every refinement predicate is well-typed and
have type int. See Appendix C for the details. To enable the reduc-
tion to first-order refinement type checking, we shall further restrict
the syntax of types later in Section 2.3.

2.2 Semantics of Refinement Types

The semantics of types is defined in Figure 3, using step-indexed
logical relations [1, 2, 6]. Roughly speaking, =¢ ¢ : 7 means that
t behaves like a term of type 7 within n steps computation. For
example, |={ ¢ : int means that if ¢ evaluates to an answer within
n steps, then the answer is not fail but an integer, (otherwise if ¢
needs more than n steps to evaluate, t may diverge or fail). Also,
the condition |=¢ ¢ : int — int means that if ¢ evaluates to an
answer A within n steps, say at k-step (k < n), then A must be a
function, and |:;’}_k Am : int must hold for every integer m, i.e.,
if Am converges to an answer within n — k steps, then the answer
is not fail but an integer. The connectives V and A have genuine
logical meaning, and especially they are commutative, so we often
use the prenex normal form.

Notice that, by the definition, =, ¢ holds for every n if ¢
diverges. We write & and || for (expression-level) Boolean con-
junction and disjunction. Notice that the semantics of t; A t2 and

F|®|_WFP F|@}_WFT
—— (WF-P I ——— (WF-I
TFe P (WF-PREDINIT) jE—— (WEF-INIT)
ST(E1imHOo(T"), E1imHO; (A)) s ¢ : int
WF-P T
T A Fur £ (REDTERM)
I'|Abgy Py L' Al P

WF-PREDAND
I ‘ Aty PL N\ P> ()

I'|A, y1:int, ..., y, : int by P

(WF-PREDFORALL)

F\Al—pryl,...,yn.P
F,A|@|_WFO' F‘A,CL‘ZO’"WFP
——— Xk (WF-I
F‘AFWF{I:U|P} F|A|‘w}:‘int(NT)
(WF-REFINE)
F,AI@}—WFT1 F,A|LE:T1|_WFT2
WEF-F
PIArg(x:m) =7 (UuN)
F|A|‘w}r’7’1 F|A,£EZT1}‘WFTQ
WEF-PAIR
FlAFWF(CL’ITl)X’TQ ()
Fur T I 7 (z:)¢T
— (WF-ENIL) T
(WF-ECONS)

E1imHO,(T) © {(z : 7) € T | depth(r) <= n}
LA=0|T,z:7

Figure 4. Well-formedness of types

t1 & to are different. For example, let 2 be a divergent term.
Then = 1 : {z:int | Q Az = 0} does NOT hold, but = 1 :
{z :int | Q & = = 0} DOES hold, since Q? & z = 0 diverges.

The goal of our verification is to check whether |= ¢ : 7 holds,
given a program ¢ and a type 7. Since the verification problem is
undecidable, we aim to develop a sound but incomplete method
below. As explained in Section 1, our approach is to use program
transformation to reduce the (semantic) type checking problem =
t : 7 to the first-order refinement type checking problem = ¢’ : 7/
where 7/ does not contain any function variables in refinement
predicates, and to check |= ¢’ : 7" using an automated verification
tool such as MoCHi [10, 14, 19], which combines higher-order
model checking [9] and predicate abstraction.

2.3 Restriction on Refinement Types

To enable the reduction of the refinement type checking problem
= t : 7 to the first-order one = t' : 7', we have to impose
some restrictions on the type 7. The most important restriction is
that only first-order function variables (i.e., functions whose simple
types are of the form int X --- X int — int X --- X int) may
be used in refinement predicates. The other restrictions are rather
technical. We describe below the details of the restrictions, but they
may be skipped for the first reading.

1. We assume that every closed type 7 satisfies the well-
formedness condition () Fyr 7 defined in Figure 4. In the figure,
E1limHO, (T") filters out all the bindings of types whose depth are
greater than n, where the depth of a type is defined by:

depth({v : o | P}) = depth(o) depth(int) = 0
depth((x : 1) — 12) = 1 + max{depth(71), depth(2)}
depth((x : T1) X 72) = max{depth(71), depth(2)}.

In addition to the usual scope rules and well-typedness conditions
of refinement predicates (that have been explained already in Sec-
tion 2.1), the rules ensure that (i) only depth-1 function variables
(i.e., variables of types whose depth is 1) may occur in refinement
predicates, (ii) in a type of the form (z : 71) — {v : o | P} where
71 is a depth-1 function type, x may occur in P but not in o (there
is no such restriction if 71 is a depth-0 type), and (iii) in a type of
the form (f1:71) X {fo: 02 | Pa} X -+ X {fn : on | Pn}, f1 may
occurin Ps, ..., P, butnotinos,...,on.

2. In a refinement predicate V1, ...,Tn. Aj t;, for every t;,
if z; occurs in ¢;, there must be an occurrence of application of
the form f(...,z;,...). Also, for every t;, if a function variable f
occurs, every occurrence must be as an application ft.

3. The special primitive fail must not occur in any refinement
predicate. Also, in every application ¢1¢2 in a refinement predicate,
t> must not contain function applications nor fail. (In other words,
to must be effect-free, in the sense that it neither diverges nor fail.)

4. Abstractions (i.e., fix(f, Az.t)) must not occur in refine-
ment predicates, except in the form let z = t in t'.

5. In refinement predicates, usual if-expressions are not al-
lowed; instead we allow “branch-strict” if-expression ifs ¢ then ¢,
else ¢ where t1 and ¢5 are both evaluated before the evaluation of
t. This is equivalent to ¢1; to; if ¢ then ¢ else t2; hence, in other
words, we allow if-expressions only in this form.

Please note that the above restrictions are essential only for
the refinement predicates that occur in o of a given type checking

?

problem |: t : {v : o | P} rather than the top level refinement P;
since given

?
Et:{v:o|VZ. At}

where VZ. A; t; does not satisfy the restrictions above, we can

replace it by an equivalent problem

)?: let v =tin (v, (AZ.t:)i) : o x [[(int™ — {r :int [r}).

(3

Remark 1. As in the case above, there is often a way to avoid
the restrictions 1-5 listed above. A more fundamental restriction
(besides the restriction that only first-order function variables may
be used in refinement predicates), which is imposed by the syntax
of refinement predicates defined in Section 2.1, is that existential
quantifiers cannot be used. Due to the restriction, we cannot express
the type:

n:int — {f:int —» int | 3z.1 <z <nA f(z) =0}
—{v:int|v =1},

which describes a higher-order function that takes an integer n
and a function f, and returns 1 if there exists a value x such that
1 <z <nA f(x) = 0. This is a typical specification for a search
function.

3. Encoding Functional Refinement

In this section, we present a transformation (—)u for reducing a
general refinement type checking problem to the first-order refine-
ment type checking problem. In the rest of the paper, we use the
assumptions explained in Section 2.1.

We first explain the ideas of the transformation (7)ﬁ informally
in Section 3.1. We give the formal definition of the transformation
in Section 3.2. Finally in Section 3.3, we show the soundness of our

verification method that uses (—).

3.1 Idea of the Transformation

The transformation (7)ﬁ is in fact the composition of four transfor-
mations: ((((—)*)%2)%)% We explain the idea of each transfor-
mation from (—)* to (—)*! in the reverse order of the applications,

since (—)t14 is the key step and the other ones perform preprocess-
ing to enable the transformation (—)*.

fa: Elimination of universal quantifiers and function symbols from
a refinement predicate
We first discuss a simple case, where there occur only one
universal quantifier and one function symbol in a refinement
predicate. Consider a refinement type of the form

{f :int — int | Vz. P[f x|}

where P[f x] contains just one occurrence of f z and no other
occurrences of function variables. It can be encoded into the
first-order refinement type

(z :int) = {r : int | P[r]}.

By the semantics of types, the latter type means that, for all ar-
gument x, its “return value” r (i.e., fx) satisfies P[r]. The ap-
plication f x in the former type is expressed by the refinement
variable r of the return value type, and the original quantifier
Vz is encoded by the function type, or more precisely, “for all”
in the semantics of the function type.

Now, let us consider a more general case where multiple func-
tion symbols occur. Given the type checking problem

o

= (t1,t2) :
{(f,g) : (n —>T{) X (T2 = T5) ‘ Va:l,xz.P[fxl,gxz]}

where each of the two different function variables occurs once
in P[f x1, g x2], we can transform it to:

let f =t inlet g = t2 in AN(z1,z2). (fz1,92) :
((z1,22) : 1 X T2) — {(7"1,7‘2) ST X Th ‘ P[rl,rg]}.

As in the case above for a single function occurrence, the
transformation preserves the validity of the judgment.

To apply the transformation above, the following conditions on
the refinement predicate (the part Va1, z2. P[f 1, g z2] above)
are required. (i) all the occurrences of function variables (f
and g) are distinct from each other (ii) function arguments (z1
and xo above) are variables rather than arbitrary terms, and
they are distinct from each other, and universally quantified (iii)
function variables f and g in a predicate P in {v : o | P} are
declared at the position of v. Those conditions are achieved by
the preprocessing (—)*?, (—)*2, and (—)** explained below.

fis Replication of functions
If a function variable occurs n (> 1) times in a refinement
predicate, we replicate the function and make a tuple consisting
of n copies of the function. For example, for a typing

t:{f:int —int | P[fx, fy]}
where f occurs exactly twice, we transform this to
let f=tin (f,f):
{(71, f2) : (int — int)* | P[fr, f20]},
so that each of the function variables f1 and f2 now occurs just
once in the refinement predicate.

o Normalization of function arguments in refinement predicates
In this step, we ensure that all the function arguments in re-
finement predicates are variables, different from each other, and
quantified universally.

Given a type of the form:
{f:int — int | VZ. P[f t]}

where P[—] is a context with one occurrence of the hole [] and
t is either a non-variable, or a quantified variable x; € {Z} but
there is another occurrence of x;, we transform this to

{f:int —int |VZ,y.y =t => P[fy|}
where y is a fresh variable.

Recall that => is an expression-level Boolean primitive. Thus,
the transformation above preserves the semantics of types only
if ¢ is effect-free; this is guaranteed by Assumption (iv) in
Section 2.3.

1 Removal of dependencies between functional arguments and
return types
In Step f4 above, we assumed “(iii) function variables ...in a
predicate P in {v : o | P} are declared at the position of v”;
this can be relaxed so that a function variable in P may be
bound at the position of f in (f:7) — {v : o | P} as described
below. A judgment

|?=t:(f:T1—>Tg)—>{V:T\P}

can be transformed to

?
Eletg=tinAf'.(f', gf'):

(fimi—om) — {(f/,l/): (f':ﬁ —>7'2) X T | P[f|—>f']}

where the function variable f’ is fresh. Here, the function argu-

ment has been copied and attached to the return value, so that
P may refer to the original argument.

In Section 1, (—)** has been used for the example of append2.
We now demonstrate uses of (—)*2 and (—)* with the other
example in Section 1:

?
E (sum, sum2)

(f :int — int) X {g : int — int | Vn.g(n) = f(n)}.
The refinement predicate is transformed by (—)* to
Yn,ni,n2. n1 =n =>na =n => g(n1) = f(n2),
which is equivalent to
Yni,ne. n1 =ng => g(ni) = f(n2).

By (f)ﬁ“, the above type checking problem is reduced to the
following one:

?
E A(n1,n2). (sumni, sum2 na) :
((n1,n2) : int2) —{(r1,7r2) : int® } ni=ny =>ry =r1}.
One may notice that the result of the transformation above is differ-

ent from that of sum and sumacc in Section 1, which is obtained
by applying a further transformation explained in Section 4.

3.2 Transformations
We give formal definitions of the transformations (—)*!, (—)*,
(=)*, and (—)* in this order.

For the sake of simplicity, w.l.0.g., we assume that every term
has a type of the following form:

S { R iljlxi:int X]ijl (fji (yj:75) —”'J/') ‘ P }

In fact, any type (and accordingly terms of that type) can be trans-
formed to the above form: e.g.,

{(fvx)(f {fT%lepl}) X{xint|P2}‘P}

b))
)

({ Hml int x H fi: ((yyim5) = 75) ‘

m

{y: _ljlxiiint x T (f (y5:75) _>TJ)

j=1

(((yr)wiT) — T/)ﬁl def

((yk)k: (T)ul) — ((ylk)keD(l) :
where, for the type 7 = {(yx)x : [T, (yx: px) | P}.

D(1) < {k | px is depth-1}
def
L= {(yk)keD(l) repay (e pr) ‘ P}

Note that (7)*1 = 7 if 7 is at most order-1; hence we have the
obvious projection pr(!) : (7)* — 7(1)_which is used below.

(fix(f, Ax.)" < fix(f, Az. (prPz, (£)1))

(tr 12)" E pry ()™ (t2)")

7_(1)) X ((’)”1 [yk — YklreD(1))

({ v: ﬁ (z:int) x lejl (fs: (yjemy) = 7) ‘ P })h def

o i) < 1 (5o 07))| 07
(VZ1, ..., Tn. Ak tr)"2

' e0Q (VZi.Vzr1 Ak (argEq(app(tr)) = sArg(ty)))

= Yk Ak ((argEq(app(te)) = sArg(te))[z: > zk])

where sArg and argEq are defined as below, and the variables

V(o e

Zk,1,-- -, %k,m, are all the elements of {z<<ft)i
app(tx) }-

def
shrg((f1)") =
sArg(tl) is defined compositionally when ¢ is not an application

argEq({a1,...,am}) = a?gEq({al}) & - & argEq({am})
argEq({(£1)'}) = (/") = srg(1))

<(ft)i)

Figure 5. Returning Input Functions (—)*!

can be transformed to
{(m,f) int x (1—7) ’ P APy /\P},

(The logical connective A was introduced as a primitive in Sec-
tion 2 for this purpose.) For an expression ¢ of the above type, we
write pri®®(t) to refer to the i-th integer (i.e., «;), and pr; (t) to
refer to the j-th function (i.e., f;). The operators pr“‘t and prj_’
can be expressed by compositions of the primitive pr, in Sec-
tion 2.1. Inside the refinement predicate P above, we sometimes
write ; and f; to denote pri™*v and pr?u respectively.

f1: Removal of Dependencies between Functional Arguments
and Return Types

Figure 5 shows the key cases of the definition of the transformation
(=)* for types and terms. For types, (—)** copies (the depth-1
components of) the argument type of a function type to the return
type. For example, a refinement type of the form

((z, f):intx (int—int)) — {r:o | P(r,z, f)}
is transformed to a type of the form
((z, f): int X (int—int))—

Note that the return type no longer depends on the argument f.

As for the term transformation, in the rule for fix(f, Az.t),
(the depth-1 components of) the argument = is added to the re-
turn value. In the rule for ¢1¢2, (£1)** (£2)** returns a pair of (the
depth-1 components of) the value of ¢2 and the value of ¢1t2;
therefore, we extract such the value of t1¢2 by applying the pro-
jection. For example, the term fix(f, Az. f) is transformed to
ﬁX(f, Az. (pI‘(l)xa pr2(f (L')))

After the transformation (—)jjl , the type of the program satisfies
a more restricted well-formedness condition, obtained by replacing
all judgments T' | A by P in Figure 4 with T') A | by P

fo: Normalization of Function Arguments in Refinement
Predicates

Figure 6 defines the transformation (f)ﬁz. In the figure, & is
an expression-level Boolean conjunction, and At abbreviates
t1 A -+ A t. For each occurrence of application (ft')" in P

(f: (int—int))x{r:o | P(r,z, f)}.

Figure 6. Normalization of function arguments (—)’i2

(where ¢ denotes its position in P, used to discriminate between
multiple occurrences of the same term ft 1 is omitted if it is

clear), we prepare a fresh variable z () ; for an occurrence of
a term t" in P, app(t®) is the set of occurrences of applications
in t'; sArg(t') is the term obtained by replacing the argument ¢’
of each (ft')" € app(t’) with 2{/©)"); and argEq(—) equates
such ¢ and 2/ *)") In the figure, e0Q(—) eliminates the original
quantifiers Vz; as follows: by the assumption 2 in Section 2.3,
for each ¢ and k, if x; occurs in {, then x; occurs at least once
as the argument of an application, and so there is some z} such
that (zi = x;) € argEq(ts); hence Vx; can be eliminated by
substituting z.. for z;.
For example, consider the type

{(f,9): (int — int)* | Vz. fo = gz}.
Lett be (f x = gz) and P be Vz. ¢, then
app(t) = {f =, gz},
argEq(app(t)) = argEq(f =) & argEq(g z)
= (Y = sarg(z)) & (29" = sArg(z))
_ (z(fw) =) & (Z(gw =),
shrg(fz =gz) = (fz<fz> = gz<gz>)’
and the transformed predicate before e0Q(—) is
W, 25 07) g 0% Ly 0 g lem
By applying e0Q(—), we obtain:
Te) g lom)

) o) ire) _ AT s 00 g o)

which may be simplified further to

V2R L) L) _ plem) _y p) g ee)

f3: Replication of Functions

As explained in Section 3.1, (—)m replicates a function f; accord-
ing to the number m; of occurrences of f; in the predicate P of a

({1/: iﬁ[l (z;:int) X fj (fizms — 7)) ‘ P})’13 def

¢
{Z/Z
j=11l=1

where, <Z> {ITy int < TT52, (¢ — ¢5) | M}sm; =

M(j);letaj,...,a; ., beall the occurrences of applications
>

of f; occurring in P and let m; be mul(P, j) (m); < m; since

T <mul ¢), and

def
P'= Plajir fiati }Jeu

TI'::]:

(xz int) x ﬁ ﬁ (fi: (7.) - (TJ/)ZZ)) ‘ Pl}

(where a1 = f]' tjyl)

(Bx(f, A)5 2 fi(f hx (0 [Fs 1]

(m = T(Ax(f, \z.t))and T = (¢, ...,
() = (pr () ()5

def

t) for a term t)

Figure 7. Replication of functions (—)*

refinement type 7 = {u ([, int x H§:1 (fiim5 = 7)) ’ P};
we call m; the multiplicity of f; and write mul (7,) or mul(P, 7).
We call the sequence (m;); = ma - - - my the multiplicity of T.

The transformation (t)ﬁS is parameterized by a multiplicity type
¢ for types, and a multiplicity annotation T for terms. The multi-
plicity types are defined by the following grammar:

¢ == {IT;_ int x [T7, (¢, — ¢)) | M}

Here, M is a function from {1,...,m} to positive integers such
that M(j) = 1 if ¢; — ¢} is not depth-1. Intuitively, M (5)
denotes how many copies should be prepared for the j-th func-
tion (of type ¢; — ¢%). For a refinement type 7 = {v :
[Ti2, (zaint) x[T72, (fiim =)) ’ P } and a multiplicity type
¢ = {1l int < [T, (¢5 — &5) | M}, we write 7 <t ¢ if
all the multiplicities in T are pointwise less than or equal to those
in ¢, i.e., if mul(P,5) < M), 75 <mu (;5], and 7'] <inul (;S] for
all j. Intuitively, 7 <,,.,; ¢ means that copying functions accord-
ing to ¢ is sufficient for keeping track of the correlations between
functions expressed by 7. Thus, in the transformation rule for types
in Figure 7, we assume that 7 <,,,; ¢, and replicate each function
type according to ¢.

The multiplicity annotation 7' used in the transformation of
terms maps each (occurrence of) subterm to its multiplicity. Here, if
a subterm has simple type int"™ x Hﬁ:l (15 — ;). then its multi-
plicity is a sequence m - - - my of positive integers. In the case for
abstractions, as explained in Section 3.1, a function fix(f, Az.t)
is copied to an m-tupled function where m is the multiplicity of
fix(f, Az.t). In the case for applications, correspondingly to the
case for abstractions, the function ¢; is replaced with its m-copies;
after that we have to insert projection pr; for matching types cor-
rectly.

”

Given a type checking problem = ¢ : 7, we infer ¢ and T
automatically (so that the transformation (7)113 is fully automatic).
For multiplicity types, we can choose the least ¢ such that 7 <,
¢, and determine 7'(t) according to ¢. For some subterms, however,
their multiplicity annotations are not determined by 7; for example,
if t = t1t2, then the multiplicity of t2 depends on the refinement
type of t2 used for concluding |= ¢1 t2 : 7. For such a subterm
t', we just infer the value of T'(t'). Fortunately, as long as ¢

n ((yn; i ())
[T (z:int) = m
i=1 g — { (Tj)j:]l;ll ((TJ/')M)L ‘ (P)* }

where, let a1, . .., a,,’ be all the occurrences of applications in

P, then, for P =Vz1,...,2m . Nk tk,
def
(P)H = ((Aktr)lar =150, liem)2 A)HyJ(a,)]lem'
((tla s ’t'n«?t/l? e 3t;n))ﬁ4 d:ef

let z; = (t1)* in - --let &, = (£,) in
let f1 = (75'1)ﬁ4 in---let f, = (t;n)ﬁ4 in
(xlv sy Ty)‘y (fl (prly)7 reey fm (prmy)))
where t; are integers and ¢; are functions.

; 4 ge
(print) ™ pr, ()™

(pr?t)‘14 M et w = (t)ﬁ4 int

j—1

—
Ay pI‘ ((prn+1w)(J-7 . '7J-7y7J—7 R J—))

and n and m are the numbers of the integer components and the
function type components in the simple type of ¢, respectively.

where t’

Figure 8. Elimination of universal quantifiers and function sym-
bols from a refinement predicate (—)**

and T satisfy a certain consistency condition (for example, in
if to then t; else i, it should be the case that T'(t1) = T'(t2)),
the transformation is sound (see Section 3.3). Since larger ¢ and
T are more costly but allow us to keep track of the relationship
among a larger number of more function calls (for example, if
T(f) = 2, then we can keep track of the relationship between
two function calls of f; that is sufficient for reasoning about the
monotonicity of f), in the actual verification algorithm, we start
with minimal consistent ¢ and 7", and gradually increase them until
the verification succeeds.

f4: Elimination of Universal Quantifier and Function Symbols

Figure 8 defines the transformation (f)ﬁ‘*. For a type 7, we write
(1) for the option type T + 1; we explain this later.

For the transformation of refinement predicates, we use the
functions j(—) and 2(7) defined as follows. For an input type
{((@i)i<n, (fi)j<m) : ... | P} of (=), we can assume that by
(—)"*, function symbols occurring in a refinement predicate are
in {f;|j <m}; and that by (—)*2 and (—)*, all application
occurrences in P have distinct function variables, and have distinct
argument variables that quantified universally. Thus, there is an
injection j(,) from the set X of occurrences of applications in
P to {j|j <m} such that for any application occurrence ft,
f= f](ft), and also there is a bijection 2(7) from the same set
X to the set of the variables that are universally in P.

For example, let us continue the example used for fi2:

{ (f,9): (int — int)* |
VAT jla) () jtae) s g ot g (ee)

The transformed type is of the form

(g1 32): (i0)%) = {(r1,72): (int)? | (.)).
The occurrences of applications are:

ar = 29 gy = g9

and
U _) se=l9) _ (ge)

Since the functions f and g are declared in this order,

i) =1, (g2 =2
Hence, the predicate (...)* is y1 = y2 =>r1 = 72 and the
transformed type is

((y1,y2): (int)i) — {(rl,rg): (int)i |y1 =y2 =>1r1 = 7‘2}.

The transformation of terms follows the ideas described in Sec-
tion 3.1 except that option types have been introduced. For exam-
ple, the term (Az. t1, Ay. t2) is transformed into the term

A, y).let ri = if = | then L else (t1)* in
let 7, = if y = | then L else (£2)"* in (r1,72).

Here, L is the exception of option types (i.e. None in OCaml
or Nothing in Haskell), and we have omitted a projection from
(t), to 7 above. The option type (and the conditional branch
if x = L then ...), is used to preserve the side effect (divergence
or failure). For example, consider the following program:

let rec f x = and g y = g y in

let main n = assert (f n > 0)

This program defines functions £ and g but does not use g. The
body of the main function is transformed to fst (fg(n, L)) >0,
where fg is a (naively) tupled version of (£, g), which simulates
calls of £ and g simultaneously. Without the option type, the simu-
lation of a call of g would diverge.

As for the transformation of tuples in Figure 8, tuples of func-
tions are transformed to functions on tuples as described in Sec-
tion 3.1. Tuples of integers are just transformed in a composi-
tional manner. In the case for projections, we can assume that
(t)* (= z) is a tuple consisting of integers and a single function.
If pr;t is a function, pr,_,(z(L,...,L,w,L,..., 1)) should
correspond to (pr,;t)w. Hence, the output of the transformation
isAw.pr,_,,(z(L,...,L,w,L,..., 1)). Otherwise, pr,t is just
transformed in a compositional manner.

Finally, we define (f)ﬂT as the composition of the transforma-
tions:

()5 = ((((1)F)F=)i2)".
3.3 Soundness of the Transformation

The transformation (—)’i reduces type checking of general refine-
ment types (with the assumptions in Section 2.3) into that of first-
order refinement types, and its soundness is ensured by Theorem 1

below.
”

In the theorem, for a given typing judgment |= ¢ : 7, we assume
a condition called consistency on multiplicity annotation 7" and
multiplicity type ¢. We give its formal definition in Appendix G;
intuitively, 7" and ¢ are consistent (with respect to ¢ and 7) if it
makes consistent assumptions on each subterm, so that the result of
the transformation is simply-typed.

Theorem 1 (Soundness of Verification by the Transformation). Let
t be a closed term and T be a type of at most order-2. Let T and
& be a multiplicity annotation and a multiplicity type for ((t)#)#2
and ((7)")*2 and suppose that they are consistent and T <, ¢

Then,
= (% (7] Fti
Proof. See Appendix H. O

implies

As explained in Section 3.2, ¢ and T above are automatically
inferred, and gradually increased until the verification succeeds.
Thus, the transformation is automatic as a whole. The converse
of Theorem 1, completeness, holds for order-1 types, but not for
order-2: see Section 4.2.

4. Transformations for Enabling First-Order
Refinement Type Checking

The transformation (—)* in the previous section allowed us to re-
duce the refinement type checking = ¢ : 7 to the first-order re-
finement type checking = (£)* : ()%, but it does not necessarily
enable us to prove the latter by using the existing automated verifi-
cation tools [10, 13, 14, 17, 18, 20]. This is due to the incomplete-
ness of the tools for proving = (¢)° : (7). They are either based
on (variations of) the first-order refinement type system [21] (see
Appendix B for such a refinement type system), or higher-order
model checking [9, 10], whose verification power is also equivalent
to a first-order refinement type system (with intersection types). In
these systems, the proof of |= ¢ : 7 (where 7 is a first-order refine-
ment type) must be compositional: if ¢ = t1t2, then 7’ such that
=t : 7 — 7and | t2 : 7' is (somehow automatically) found,
from which = t1t2 : 7 is derived. The compositionality itself is
fine, but the problem is that 7’ must also be a first-order refinement
type, and furthermore, most of the actual tools can only deal with
linear arithmetic in refinement predicates. To see why this is a prob-
lem, recall the example of proving sum and sum2 in Section 1. It
is expressed as the following refinement type checking problem:
?
E (sum, sum2) :
(sum: int — int) X ((n :int) — {r : int | r = sum(n)}).

It can be translated to the following first-order refinement type
checking problem:

?
E Az, y).(sumz, sum2 y) :

((z,y) : int?) = {(r1,re) :int® |2 =y = r1 =12}
However, for proving the latter in a compositional manner using
only first-order refinement types, one would have to infer the fol-
lowing non-linear refinement types for sum and sum?2:

(z :int) —

{r:imt |[(z2<0=>r=0)A(z>0=>r=z(x+1)/2)}.

To deal with the problem above, we further refine the transfor-
mation (—)n by (i) tupling of recursive functions [5] and (ii) inser-
tion of assumptions.

4.1 Tupling of Recursion

The idea is that when a tuple of function calls is introduced by

(_)M ((fr (Pr1Y), .-, fm (Pr,,y)) in Figure 8 and (sum z, sum2 y)

in the example above), we introduce a new recursive function for
computing those calls simultaneously. For the example above, we
introduce a new recursive function sum_sum?2 defined by:

let rec sum_sum2 (x,y) = sum_sumacc(x,y,0)
and sum_sumacc (x,y,m) =

if x<0 then if y<0 then (0,0) else
More generally, we combine simple recursive functions as follows.
Consider the program:

let f = fix(f, A\x.if 11 then t12 else E1[f t1]) in

let g = fix(g, \y. if ¢21 then tos else Ez[gts]) in ... (f,g) ...

where E; and E5 are evaluation contexts, and ¢;;, E;, and ¢; have
no occurrence of f nor g. Then, we replace A(x,y). (fx,gy) in

(=)™ with the following tupled version:
Mz’ y'). let = fz'in
ﬁx(h, Az, y).
if t11then if ¢5; then (t12, t22) else (t12, E2[g ta])
else if to1then (E1[f t1], t22)

else let (r1,72) = h (t1,t2) in (E1[r1], E2[r2])) (2, y).

The first application f 2’ is inserted to preserve side effects (i.e.,
divergence and failure fail). To see why it is necessary, consider
the case where t11 = true, t12 = fail and t27 = Q. The call to
the original function fails, but without let _ = f 2’ in - - -, the call
to the tupled version would diverge.

The function sum_sumacc shown in Section 1 can be obtained
by the above tupling (with some simplifications).

4.2 Insertion of Assume Expressions

The above refinement of (—)* alone is often insufficient. For

example, consider the problem of proving that the function:
let diff (f,g9) = fun x —> £ x - g x
has the type

def
T =

{(f.9): (int - int)* | Vz. fz > gz}
— {h:int —int |Vz.hx > 0}.

The function is transformed to the following one by (f)m:
let diff fg = fun x —>
let rl,r2 = fg (x, 1) in
let rl’,r2" = fg (L, x) in rl - r2’

and the type 7 is transformed to
(((z1,22) : int2) — {(7"1,7"2):in1:2 | o1 =22 =11 >12})
— (int = {r:int | 7 > 0}).

Here, L is used as a dummy argument as explained in Section 3.2-
#4. We cannot conclude that r1 — r2’ has type {r:int | r > 0}
because there is no information about the correlation between r1
and r2’: from the refinement type of fg, we can infer that x =
L =7 >mrand L = 2 =] > r5, but 1 > 72’ cannot
be derived.’ In fact, |= (diff)* : (7)* does not hold,® which is a
counterexample of the converse of Theorem 1.

To overcome the problem, we insert the following assertion just
after the second call:

assume (let (rl’’,r2’'’) = fg(x,x) in
rl=rl’’ & r2'=r2'")

Here, assume(t) is a shorthand for if ¢ then true else 1oop()
where loop() is an infinite loop. From fg (x, x), we obtain
rl’’ > r2’’ by using the refinement type of £g. We can then
use the assumed condition to conclude that r1 > r2’. In general,
whenever there are two calls

5 One may think that we can just combine the two calls of £g as

let diff fg =
fun x -> let rl,r2 = fg(x,x) in rl-r2’

This is certainly possible for the example above, but it is in general difficult
if the occurrences of the two calls of £g are apart.
6To see this, apply (diff)ﬁ to

Az1,x2).if 1 = 22 then (1,0) else (0,0)

and apply the returned value to, say, 0.

Table 1. Results of preliminary experiments

size size .

program (before #') (after) pred. | time[sec]
sum-acc 56 282 0 0.54
sum-simpl 40 270 0 0.75
Sum-mono 27 279 0 0.45
mult-acc 63 347 0 0.38
a-max-gen 112 476 1 0.29
append-xs-nil 72 1364 0 45.57
append-nil-xs 63 725 0 16.43
rev 128 1868 0 176.24
insert 32 6262 0 52.49

let rl,r2 = fg (x, 1) in
Cl[let rl’,r2’" = fg (L, y) in ...]

(where C is some context), we insert an assume statement as in

let rl,r2 = fg (x, 1) in
C[let rl’,r2’ = fg (L, y) in
assume (let (rl’’,r2’’) = fg(x,Vy)
in rl=rl’’ & r2'=r2'"); ...]
We write (—)u/ for the above assume-inserted version of (—)ﬁ,

The formal definition of (—)’i, is described in Appendix K. In
the target language, fail is treated as an exception, and we define
assume (¢) as a shorthand for:

if (try ¢t with fail — false) then true else loop().

Note that our backend model checker MoCHi [10, 14] supports

exceptions. After replacing (—)* with (f)u/, Theorem 1 is still
valid:

E 07 (0}
See Appendix L for the details of the proof.

implies

=t

5. Implementation and Experiments

We have implemented a prototype, automated verifier for higher-
order functional programs as an extension to a software model
checker MoCHi [10, 14] for a subset of OCaml.

Table 1 shows the results of the experiments. The columns
“size” show the size of the programs before and after the trans-
formations described in Section 4, where the size is measured by
word counts.” The column “pred.” shows the number of predicates
manually given as hints for the backend model checker MoCHi.
The experiment was conducted on Intel Core i7-3930K CPU and
16 GB memory. The implementation and benchmark programs
are available at http://www-kb.is.s.u-tokyo.ac.jp/
~ryosuke/mochi_rel/.

The programs used in the experiments are as follows. The pro-
grams “sum-acc”, “sum-simpl”’, and “append-xs-nil” are those
given in Section 1. The program “mult-acc” is similar to “sum-
acc” but calculates the multiplication. The program ‘“‘sum-mono”
asserts that the function sum is monotonic, i.e., Vm,n. m < n =
sum(m) < sum(n). The program “a-max-gen” finds the max of
a functional array; the checked specification is that “a-max-gen”
returns an upper bound. Here is the main part of the code of “a-
max-gen”.

let rec array_max i1 n array =

if 1 >= n then 0 else
let x = array i in
let m’” = array_max (i+l) n array in

7 Because the transformation is automatic, we consider the number of words
is a more appropriate measure (at least for the output of the transformation)
than the number of lines.

if x > m’ then x else m’
let main i n =
let array = make_array n in
let m = array_max 0 n array in
if i < n then assert (array i <= m)

The program “append-nil-xs” asserts that append nil xs =
xs. The program “rev” asserts that two list reversal functions are
the same, the one uses snoc function and the other one uses an ac-
cumulation parameter. The program “insert” asserts that insert
x xs is sorted for a sorted list xs. Note that, for all the programs,
invariant annotations were not supplied, except the specification be-
ing checked. For example, for “a-max-gen” above, the specification
is that the main has type int — int — unit, which just means that
the assertion assert (array i <= m) never fails; no type
declaration for array_max was supplied. For the “append-xs-nil”,
as described in Section 1, the verifier checks that append has the

type
xzs: 7= ({ys: 7 | ys(0) = None}) —{rs: 7 | Vi.zs(i) = rs(i)}

where 7 < int — (int option). (See Appendix A for more
details.)

In the table, one may notice that the program size is significantly
increased by the transformation. This has been mainly caused by
the tupling transformation for recursive functions. Since the size
increase incurs a burden for the backend model checker, we plan to
refine the transformation to suppress the size increase. Most of the
time for verification has been spent by the backend model checker,
not the transformation.

The programs above have been verified fully automatically ex-
cept “a-max-gen”, for which we had to provide one predicate by
hand as a hint (for predicate abstraction) for the underlying model
checker MoCHi. This is a limitation of the current implementation
of MoCHLi, rather than that of our approach. We have not been able
to experiment with larger programs due to the limitation of MoCHi.
‘We expect that with a further improvement of automated refinement
type checkers, our verifier works for larger and more complex pro-
grams. Despite the limitation of the size of the experiments, we are
not aware of any other verification tools that can verify all the above
programs with the same degree of automation.

6. Related Work

Knowles and Flanagan [7, 8] gave a general refinement type sys-
tem where refinement predicates can refer to functions. Their ver-
ification method is however a combination of static and dynamic
checking, which delegates type constraints that could not be stati-
cally discharged to dynamic checking. The dynamic checking will
miss potential bugs, depending on given arguments. On the other
hand, our method is static and fully automatic.

Some of the recent work on (semi-)automated® refinement type
checking [13, 24] supports the use of uninterpreted function sym-
bols in refinement predicates. Uninterpreted functions can be used
only for total functions. Furthermore, their method cannot be used
to prove relational properties like the ones given in Section 1, since
their method cannot refer to the definitions of the uninterpreted
functions.

Unno et al. [19] have proposed another approach to increase
the power of automated verification based on first-order refinement
types. To overcome the limitation that refinement predicates can-
not refer to functions, they added an extra integer parameter for
each higher-order argument so that the extra parameter captures
the behavior of the higher-order argument, and the dependency be-

8 Not fully automated in the sense that a user must supply hints on predi-
cates.

tween the higher-order argument and the return value can be cap-
tured indirectly through the extra parameter. They have shown that
the resulting first-order refinement type system is in theory rela-
tively complete (in the same sense as Hoare logic is). With such an
approach, however, a complex encoding of the information about
a higher-order argument (essentially Godel encoding) into the ex-
tra parameter would be required to properly reason about depen-
dencies between functions, hence in practice (where only theorem
provers for a restricted logic such as Presburger arithmetic is avail-
able), the verification of relational properties often fails. In fact,
none of the examples used in the experiments of Section 5 (with
encoding into the reachability verification problem considered in
[19]) can be verified with their approach.

Suter et al. [15, 16] proposed a method for verifying correctness
of first-order functional programs that manipulate recursive data
structures. Their method is similar to our method in the sense
that recursive functions can be used in a program specification.
For example, the example programs “sum-simpl” and “append-nil-
xs” can be verified by their method (if lists are not encoded as
functions). Their method however can deal only with specifications
which does not include partial functions. For this reason, if we
rewrite the definition of sum as:

let rec sum n = 1f n=0 then 0 else n+sum(n-1)

their method cannot verify “sum-simpl” correctly, while our method
can.

There are less automated approaches to refinement type check-
ing, where programmers supply invariant annotations (in the form
of refinement types) for all recursive functions [3, 4], and then ver-
ification conditions are generated and discharged by SMT solvers.
Xu’s method [22, 23] for contract checking also requires that con-
tracts must be declared for all recursive functions. In contrast, in our
method, a refinement type is used only for specifying the property
to be verified, and no declaration is required for auxiliary functions.

There are several studies of interactive theorem provers (Coq,
Agda, etc.) that can deal with general refinement types. These sys-
tems aim to support the verification, not to verify automatically.
Therefore, one must give a complete proof of the correctness by
hand. Moreover, these systems cannot deal directly with terminat-
ing programs and the proof of the termination is also required.

7. Conclusion and Future Work

We have proposed an automated method for verification of rela-
tional properties of functional programs, by reduction to the first-
order refinement type checking. We have confirmed the effective-
ness of the method using a prototype implementation. Future work
includes a proof of the relative completeness of our verification
method (with respect to a general refinement type system) and an
extension of the method to deal with more expressive refinement
types. As described in Section 2, we restrict refinement predicates
to top-level quantifiers over the base type and first-order function
variables. Relaxing this limitation is also left for future work.

Acknowledgment

We would like to thank Naohiko Hoshino and anonymous refer-
ees for useful comments. This work was supported by Kakenhi
23220001.

References

[1] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In ESOP 06, pages 69-83, 2006.

[2] A. W. Appel and D. McAllester. An indexed model of recursive types
for foundational proof-carrying code. TOPLAS, 23(5):657-683, Sept.
2001.

[3] G. Barthe, C. Fournet, B. Grégoire, P.-Y. Strub, N. Swamy, and
S. Zanella-Béguelin. Probabilistic relational verification for crypto-
graphic implementations. In POPL ’14, volume 49, pages 193-205,
2014.

[4] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. TOPLAS, 33(2):8, Jan.
2011.

[5] W.-N. Chin. Towards an automated tupling strategy. In PEPM 1993,
pages 119-132, 1993

[6] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical
relations. In LICS ’09, pages 71-80, 2009

[7]1 K. Knowles and C. Flanagan. Type reconstruction for general refine-
ment types. In ESOP ’07, pages 505-519, 2007.

[8] K. L. Knowles and C. Flanagan. Hybrid type checking. TOPLAS, 32
(2), Jan. 2010.

[9] N. Kobayashi. Model checking higher-order programs. J. ACM, 60
(3):20, 2013.

[10] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CE-
GAR for higher-order model checking. In PLDI ’11, pages 222-233,
2011.

[11] E. Moggi. Computational lambda-calculus and monads. In LICS ’89,
pages 14-23, 1989

[12] C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional
programs with pattern-matching algebraic data types. In POPL 11,
pages 587-598, 2011.

[13] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI
"08, pages 159-169, 2008.

[14] R. Sato, H. Unno, and N. Kobayashi. Towards a scalable software
model checker for higher-order programs. In PEPM 13, pages 53—
62,2013.

[15] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic
data types with abstractions. In POPL ’10, volume 45, page 199, 2010.

[16] P. Suter, A. S. Koksal, and V. Kuncak. Satisfiability modulo recursive
programs. In SAS ’11, pages 298-315, 2011.

[17] T. Terauchi. Dependent types from counterexamples. In POPL 10,
pages 119-130, 2010

[18] H. Unno and N. Kobayashi. Dependent type inference with inter-
polants. In PPDP ’09, pages 277-288, 2009.

[19] H. Unno, T. Terauchi, and N. Kobayashi. ~Automating relatively
complete verification of higher-order functional programs. In POPL
’13, page 75, 2013.

[20] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In
ESOP ’13,2013.

[21] H. Xi and F. Pfenning. Dependent types in practical programming. In
POPL 99, pages 214-227, 1999

[22] D. N. Xu. Hybrid contract checking via symbolic simplification. In
PEPM ’12, pages 107-116, 2012

[23] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking
for Haskell. In Workshop on Haskell, pages 41-52, 2009.

[24] H. Zhu and S. Jagannathan. Compositional and lightweight dependent
type inference for ML. In VM CAI ’13, 2013.

A. Verification of “append-xs-nil”

We show that how our verifier transforms and verifies the program
“append-xs-nil”. The whole program is shown below:

let rec make_list n =
if n < 0 then []
else Random.int 10
let rec append xs ys
match xs with
[1 —> ys

make_list (n-1)

| x::xs’ —-> x append xs’ ys
let main n i =
let xs = make_list n in
let rs = append xs [] in
assert (List.nth rs i1 = List.nth xs 1)
The goal is to verify that the main function has type int —

int — unit, which means that the assertion never fails. As men-
tioned in Section 5, only the program above is given to the verifier,
without any annotations.

The verifier first encodes lists as functions. We use notations for
lists and functions interchangeably below. The verifier next guesses
a multiplicity annotation 7" by a heuristics. For this program, the
verifier guesses that all the multiplicities are 1.

Then, the transformation (7)ﬁl is applied to the program, and
the following program is obtained.

let rec make_list n =
if n < 0 then []

else Random.int 10 make_list (n-1)
let rec append xs ys =
match xs with [] -> [],ys,ys
| x::xs’ —>
let xs’’,ys’,rs = append xs’ ys in
x::xs’’, ys’, x::rs
let main n 1 =
let xs = make_list n in

let xs’,ys’,rs = append xs [] in
assert (List.nth rs i1 = List.nth xs’ i)

The new append returns copies of its arguments xs and ys, and
xs’, the copy of xs, is used in the assertion instead of xs.

The transformations (—)*2 and (—)** have no effect in this case.
By applying the transformation (—)M, the following program is
obtained:

let rec make_list n =
if n < 0 then []

in
in

in

else Random.int 10 make_list (n-1)
let rec append xs ys (i,3,k) =
match xs with
[] => let rl,r2,r3 = None, ys J, ys k in
assume (j=k => r2=r3); rl, r2, r3
| x::xs’ —>
let xs’’ys’rs = append xs’ ys in
if i =0 & k = 0 then
let _,r2,_ = xs’’ys’rs(None, j,None)
X, Y2, X
else if 1 = 0 & k <> 0 then
let _,r2,r3 = xs’’ys’rs(None, j,k-1)
x, r2, r3
else if k = 0 then
let rl,r2,_ = xs’’ys’rs(i-1, j,None)
rl, r2, x
else
xs’’ys’rs(i-1,j,k-1)
let main n i =
let xs = make_list n in
let xs’_nil_rs = append xs [] in
let xs’rs (i,3) =
let rl,r2,r3 = xs’_nil_rs (i, None, Jj) in
rl, r3
in

let rl,r2 =
assert (r2 =

xs'rs
rl)

(i,i) in

Here, we omit some constructors and pattern-matchings of option
types.

The existing model checker MoCHi infers that the transformed
append has the following first-order refinement type:

(int — int) —
((j :int) > {y :int | j = 0 = y = None}) —
((3,5, k) + int®) = {(r1,r2,73) s int® | i = j = r1 =12}

From the result of MoCHi, the verifier reports that the original
program is safe.

B. A Refinement Type System

This section gives a sound type system for proving |= ¢ : 7. Here
we do not assume the restrictions in Section 2.3. We obtain also
first-order refinement type system by restricting the type system so
that function variables are disallowed to occur in predicates in all
the refinement types. Various automatic verification methods [10,
13, 14, 17, 18, 20] are available for the first-order refinement types.

The type judgment used in the type system is of the form I -
t : 7, where I, called a type environment, is a sequence of type
bindings of the form z : 7, and L is (the name of) the underlying
logic for deciding the validity of predicates, which we keep abstract
through the paper. Below, we use general well-formedness Fgyr
(defined in Appendix C), which represents usual scope rules of
dependent types.

We define value environments as mappings from variables to
closed values and use a meta variable 7 for them. For a value
environment 1 and an environment I" such that ey I', we define
n ¢ T as follows:

def,
@#Z@étme

nU{z— V} #ZP,x:T(gvﬂzZF and =7V 77
The type judgment ' -£ ¢ : 7 semantically means that for any n
and), if n =0 T, then =7 t[n] : 7[n].

The general refinement type system is given in Figures 9 and 10.
The judgment I' | P F* P’ means that, in £, P implies P’
under the type environment I'. We assume that the logic £ sat-
isfies that, if I" | P £ P’, then for any n and 7 such that
n EU T holds, =) Pln] implies = P’[n]. In Figure 9, we
define t'(z+t]) as let z = ¢ in ', and extend it to the op-
erations P(z <—t]) and o(x <+ t]) compositionally. For example,
(Vy.t1 Ata)(z +t) = Vy.(t1 [z +t)) A (t2(z +t])). We define
t(z1 < t1,...,xn < tn) as ((t(zn < tn)) -+ -) (21 <+ t1)).

The typing rules are similar to those of Knowles and Flana-
gan [7]. We discuss some key rules. In the rule T-APP, intuitively,
y is assumed to have the type obtained by replacing formal ar-
guments in the type of the return value of x with actual argu-
ments. The rule T-SUB is for subsumption. For example, I" - 42 :
{v :int | v > 0} is obtained by the following derivation.

P42 :{v:int | v =42}
PH{v:int | v =42} <: {v:int|v > 0}
'+42:{v:int | v > 0}

In the rule T-FAIL, fail is typable only if a contradiction occurs in
the type environment.

We now show a typing of the running example introduced in
Section 1. Here, as the underlying logic £, we use linear integer

D(z)=r7 I Feour 7
r Ff T:T
(T-VAR)

——— (T-CONST
I'Hn:int ()

et {v:int | P}
D,z:{v:int| PAv=true} £t : 7
Dyz:{v:int| PAv#true} F ta: 7

(x ¢ FV(t1) U FV(t2))

. (T-TF)
I'H¢ if t then t; else to : 7(z)
The arity of i £t int
e arity 0£ [op] is n . mn (T-OP)
¢ op(tiy ... ty) @ int
U, f:(zim) = m,z:nbdt:m (fEFV(n)UFV(m))
I FE fix(f, Ax1.t) : (z1:71) = 7o
(T-F1x)
Pt {v: (z1:m) = 72 | P} N (T-APP)

r '_t£ tty : T2([.T1 <—t1])

F}_tﬁ tiZpi([l,’l(—th...,l’i_l(—ti_l]) forallign
I'+H£ (1, tn) s Ty (@it pe)

(T-TUPLE)

THEt:{vTI, (zaps) | P} pi=A{vi:o; | P}
IHE prjt: {vi: 0| P} (z1 < prit,...,zi1 < pr,_,t)
(T-PROJ)
— (T-FAIL)
I, z:{v:o|false} ¢ fail : 7
FET <: T IR Ve 7 <o
L (T-SUB)
ko t:r
THEt:{v:o | Pvt

o PRed) e

Pk t:{v:o| P}

THE ¢ : P THE ¢ : P

Etitvio|P) Crtsivsol P o

I+et:{v:oc|PAP}

Figure 9. Typing rules

I'fo<:o ILv:o|PH P
PHF{v:o | Py <:{v:o'| P}

(SUB-REFINE)
F}—SLT{<:T1 F,mlzT{I—fT2<:T£
THE (21 :m) = 12 <: (z1: 7)) — 75
(SUB-FUN)

I'H£ int <: int
(SUB-INT)

T,@1:p1,... i1z pic1 FE pi < ph foralli <n

TSI, (o pi) <: TTiey (i pf)
(SUB-TUPLE)
FET < T THE <!
FaD, o:r<: T, 7'
(ENVSUB-CONS)

——— (ENVSUB-NIL
FE O <: 0 ()

Figure 10. Subtyping rules

ST(F) l_ST t:int
r %GWF t

I'Fowr P I Feur Po
I'For PL AP

(GWF-PREDTERM)

(GWEF-PREDAND)

[,y :int, ...y, : int Fer P
hn Yn & L (GWE-PREDFORALL)
F '_GWF Vyl, ey Yn. P

FFGWFU FPTIO'I*GWFP
GWF-REFINE
F"GWF{$ZU|P} ()
m (GWF-INT)
F l_GWF T1 F, X :T1 }—Gwp T2 (GWF-FUN)

I '*(;wp (JZ : 7'1) — T2

Fl_GWFTl F,ZEZTl }_GWFTQ
F-PAIR
e (z:71) X 72 GW)
(GWF-ENIL)

}_GWF @

Far T o 7
'_GWF 1—‘7 X . T

(@:) ¢l (GWF-ECONS)

Pe=0|T,x:71

Figure 11. General well-formedness of types

arithmetic with beta equality. The following derivation shows that

Trivial.
Trivial.
We show that

Erfllet x = toint iff

Since t9 — t1,

o let z =1t int.

letx =tpint — letx =1t int; (D
hence,

Ertllet o =ty int

ELVAVE<n+1.(letz=toint) —"A = A=0)

= VAVE<n. ((letz=t int) —"A = A=0)

L L let z =t int,

where the left-to-right implication is from (1) while the converse
is from (1) and since the evaluation is deterministic.

7 ={v: 0| P}|Trivial.
Tivil

7= (z1:71) X T2|Trivial.

The following are typical lemmas for step-index.
Lemma 4.
1. Foranyn, V,and 7, if 2T V . 7 then =0 V @ 7.
2. Ift() — t1 and):2 t1: 7, then ':ZLJFI to:T.

Proof. Straightforward: 1 is by induction on 7, and 2 is from the
definition of |=¢. O

sumhasthetype {f : int = int |Vz.2 >0 =>fe=o+ f (z - 1)}

v:int — int | true F° P(f «t)

Z . . . SUB-REFINE
Fsint — int <: {f : int — int | P(f <)} -
F¢:{f:int - int | P(f 1)} SUB
T-SUBST

F¢:{f:int —int | P}

where ¢t = fix(sum, Az.if z < 0 then 0 else = + sum (z — 1))
andP=x>0=>fxz=x+ f(xz—1).Since P(f < t) <
r>0=>tz=c+t(z—1) < z2>0=>z+t(x—1) =
z+t(xz—1)andz +t(z—1) = z+t(x—1)isvalid in L,
P(f «t) is valid in L.

The type system is sound with respect to the semantics of types.
A proof is given in Appendix D.

Theorem 2 (Soundness of the Type System). +£ ¢ : 7 implies
=t:T.
C. Well-formedness Conditions for Types

Here we show the definition of general well-formedness, which is
applied through Sections 2.1, 2.2, and Appendix B. Figure 11 gives
the definition of the general well-formedness.

D. Proof of Soundness of the Type System
Lemma 3. Forany P, to and t1 such that to — t1, and n,
P P(rto) iff Ep Pla+ti).
For any 1, to and t1 such that to — t1, V, and n,
LY r(reto) iff LV T(nth).

Proof. We prove the two statements by the inductions on the syntax
of P and T, respectively.

(The converse of Lemma 4.2 also holds similarly to Lemma 3;
but we do not need it.)

Theorem 5 (Soundness of Type System). For any L, if F£ t: T,
then =1t : T.

We show this theorem by generalizing on environments as
Lemma 7, which needs Lemma 6 and the following definition:

PEt:T £ for any n and 0, if n o T then =¢ ¢[n] : 7[n)].
Lemma 6 (Soundness of Subtyping). Forany L, if I' F5 1 <: 7,
then for any n and n such that n |=¢ T and for any V, if E7 V @
T(n] then =3 V = 7'[n].

Also, if FE, T' <: TV, then for any n and n, if 1 Eo T then
ngEe
Proof. By induction on the derivations of I' FE 7 <: 7' and
FZ T <:T". (See Appendix E for details.) O

Lemma 7. Forany L, if T FE t: 7, thenT =t : 7.

Proof. By induction on the derivations of I' FE£ ¢ 7. (See
Appendix F for details.) O

E. Proof of Lemma 6
We prove Lemma 6 by induction on the derivations of T" F5 7 <:
7 andFL T <: T,

(SUB-REFINE)| Trivial from the inductive hypothesis and the as-

sumption on £, i.e.,if I' | P = P, then for any n and 7 such that
n = Tif =5 P then (=5 P[],
(SUB-INT)| Trivial.

(SuB-FUN)| This case is also trivial (and tedious), but we give the

detail for demonstration. Suppose inductive hypotheses:

@) for any n, n =2 T, and Vi, if =} Vi : 7i[n] then 7 Vi :
m1[n],

(i) for any n, ' =8 (T, z1 : 71) and Vo, if EY Va
E7 Vo mn).

For given n, n such that n ¢ T, and V, assume =7 V

(z1:71) = T2, €.,

: 72[n’] then

(iii) for any n’ < n, any Vi such that I:Z,L, Vi : 7i[n], and
any Ao and k < n’ such that VV; —F Ay,):f}/_k As

T2 [77][1‘1 — V1].

Then, we show that = V : (z1:71) — 73, i.e., for given n’ < n,
given V4 such that =" Vi : 7{[n], and given A, and k < n/ such
that V'V —* Ay, we show =2 7% Ay« m4[n][z1 — VA).

Since n ¢ T, by Lemma 4.1, 7 |:Q/ T'; then since szf,
Vi @ 7'[n] and by (i), we have EY Vi m [n]. Hence, since
VVi —F Ay and by (iii),

= E Ay mafn]fes o VA

Now, let " := n U {z1 — V1}. Since

nkEel Ev Vi)
andn’ —k <n' <n,byLemmad4.1,

)
and

3,_k Vi i)

ie.n =X TR (D, 211 7). By 2), =2 7F Ayt 7] (thus As is
a value); hence, by (ii), |:(}/’k Az 1[0’ 1(= T3[n)[z1 — Vi]).
(SUB-PAIR)| Trivial.

(ENVSUB-NIL) | Trivial.

(ENVSUB-CONS) | Trivial.

’
—k
¢ "I and

F. Proof of Lemma 7
We prove Lemma 7 by induction on the derivations of I' FEt 7.
Important cases are (T-F1X), (T-APP), and (T-FAIL); especially, we
use induction on n (only) in the case (T-F1x). Lemma 6 is used in
the case (T-SUB).
(T-VAR)| Trivial.
(T-CONST)| Trivial.
Suppose inductive hypotheses on the typing derivation:
@) for any n, n, and V, if
nU{z—V}EL (T, z: {v:int | P Av = true})
then =0 ta[n][z— V] : 7[n][z — V].
(ii) for any n, n, and V, if
nU{z— V}E! (T, z: {v:int | P Av # true})
then =7 ta[n][z— V] : 7[n][z— V].
Then, for given n, n, and V' such that
nU{z— V}ES (T, z: {v:int| P}) 3)
we show
Eo (if z then ¢ else t2)[n][z — V] : T[n][z— V].

From (3), =7 V : int, and hence V is an integer. We suppose
V' = true; the case V' # true can be proved similarly.

From (3) and since V' = true, n, 7, and V satisfy the assump-
tion of (i); hence,

e tinlfz = V]: 7z V]

While, since V' = true,

(if = then ¢, else t2)[n][z— V]

= if V then t1[n][z — V] else t2[n][z — V]

— t1[n][z— V]
Then, from Lemmas 4.1 and 4.2,

E¢ (if z then ¢, else t2)[n][z— V] : T[n][z— V].
(T-OpP)| Trivial.
Suppose inductive hypotheses on the typing derivation:
@) forany n and n', if ' =2 T, f: (x1:71) — T2, @1 : 71, then
e ta[n'] : m2[n'],

and that f ¢ F'V (1) U FV (72). We show, by induction on n, that
for any n and n such that n =7 T,

Ev fix(f, Az1.t2)[n] : ((z1:71) = T2)[7].)

The base case (n = 0) can be easily shown from the definitions.
Next, for n > 0, we assume the induction hypothesis on n:

(i) for any 7 such that =271 T,
T fix(f, Az)] : ((21:70) = 72) [,

and then for given 7 such that |={ T', we show (4), i.e., for given
n' < n and given V4 such that |:3l Vi : 11[n], we show

= fix(f, A)] Va
Now let n”/ :=n' — 1; thenn” < n — 1. For
n' = nU{f = fix(f, A1)]} U {z1 = Vi,

we show that n’ |:Z” T, f:(z1:71) = T2, 1 : 1.
Using Lemma 4.1, since n =¢ I'and =7 Vi : 71 [n),

= V).

Also, since p ="' T, by (ii) and since n”” < n — 1,

= fix(f, Awn)]+ ((21:m) — m2) .
Hence, with the fact f ¢ FV (71),

: 7'2[7]][.’1}1 '—>V1]

n |:ZN ' and

7’ }ZZ” D, f:(z1:711) = T2, 21 : T1.
Then, by (i) where n is instantiated with n” = n’ — 1,
e o] - el
Now fix(f, Az1.t2)[n]Vi —> t2[n]; hence by Lemma 4.2,

= fix(f, Az t2)[n]Va = (0]

Since now f ¢ FV (1), 72[n'] = 72[n][x1+— Vi]; thus the goal
has been proved.

(T-APp)| Suppose inductive hypotheses:

(i) for any n, any 7 such thatn |={ T, and any A and ko < n such
that t[n] —*0 A, =% A: {v:0o | P}[n); and

(ii) for any n, any n such that n = I', and any A; and k1 < n
such that t1[n] —*1 A1, EFF Ay - 7 [n);

and by Lemma 6 we have that

(iii) for any n and 7 such that n =¢ T" and for any V' and V1,
Fv (Vi) :{(v,11) o x o1 | PA P}]
implies =y (V, Vi) : {(v,11) : 0 x 01 | Pa(v2 4 vin) }).

Then, for given n, i such that = T, Az, and & < n such that
(tt1)[n] —* Az, we show

ErR Ay {va : oa2(m1 t1)) | Palzy < t1]) A Po} [n],
i.e., the following three:
Ev* Az oz t1)[n]
o Paar t1)[n)[vz — As]
2" Paln)[ve — As].

Since (tt1)[n] = t[n]ti[n] —* As, there exist A and ko <
k (< m) such that

tl) —" 4;
further, by (i), such A always satisfies
Erf A {v:o| P}). Q)
Thus, especially A is a value and
Aty [n] —FR0 4. (6)
By (6), there exist A; and k1 < k — ko such that
ta[n] —" Ax; ™
further, by (ii), such A; always satisfies
U A). ®)
Especially, A; is a value and
AAy —FTRoR 4,)

Now, since
Ee Ac{vio| Py (= {v: (zu:nm) = 72| Pl)}),

especially =170 A : (z1:71[n]) — 72[n]. Then, we shall utilize
the semantics for function type: Let n’ := n — ko — ki, then
n' < n — ko. Since n’ < n — ki, by (8) and Lemma 4.1,
|:f}/ A1 : 11[n]. Thus, we have

= AA; o)1 Ay
Then, by the definition of |:?/ and (9), since n’ — (k—ko — k1) =
n—k,

EvT A s mon) [Au.
Now, by (7) and Lemmas 3 and 4.1,

v Ar i nfl(e - afl) (= r2(e - a))),

ie.,
VP Az oa(e = t)n), By TN Pl t)[n)[ve s As).

The remaining to show is
Er " Palnllve = Ao

From (5) and (8), =2 A : {v:o | P}[n] and =2 A,
(={v1: 01| Pi}[n]); hence, by (iii), we have

)::,1/ (A, Ay): {(1/, v1):0o X o1 | Pé([l/z(—uylb} [n].

Hence, =7 P} (v < AA1)[n] (= P4ln](v2 < AA;)); then from
Lemma 3 and (9), and since n’ — (k — ko — k1) = n — k, we have
o " Pan][v2— Ao

[(T-PAIR)]| [(T-FsT)]| [(T-SND)| These cases are similar to (and
easier than) the case (T-APP).

(T-FAIL)| For given n, 7, and V such that nU {z — V} =J
I, x:{v:o]| L}, weshow simply contradiction, instead of |={
fail : 7[n][z— V].

ety

P(x) = ¢

o s (C-VAR)
<I>|—cn—{1nt\0)} (C-CONST)

e e

The arig:f [Lz,p(]lgf n 7 tn)®: :ji; :| E)i}nt |0} (C-0p)

S s R e S

Ot {p gﬂi |t]t\f}:} - Ohcti:dn (C-APP)

Ohcti: {int |0} @ t): {o; =) | MG} (Vi.j)

O be (B, t)) ATy int x [T, (¢ —) | M}

(C-TUPLE)

Pt {I[L, int x]2, (¢; —¢5) | M}
® b, pri®t: {int | 0} (C-pro1b

et {[[[L,int x [[T2, (¢; — @) | M}
C-ProOJF
Shopr,ti{o, -0, (MG} o
(C-FAIL)

® Fo fail : ¢
O:=0|P,z:¢

Figure 12. Type system for multiplicity types

By the assumption, =0 V : {v: o | L} [n] (={v:oln] | L});
and thus =) L. Hence for any A such that L —9 A4, A = true;
in fact L (= false) itself can be such A, then A = true while
A = 1 = false, i.e., contradiction.

(T-SuB)| Trivial, from Lemma 6.

(T-SuBST)| Straightforward.

G. Consistency
G.1 Consistency and its Sufficient Condition

Figure 12 defines a type system for a term ¢ and a multiplicity type
¢. For a derivation of ® - ¢ : ¢ in this type system, we can define
a multiplicity annotation T" of ¢ as below: every subterm ¢’ of ¢ has
the judgement &’ . ¢’ : ¢’ in the derivation, where

¢ =A{I1, int x [T, (65 — ¢)) | M},

and then we can define T'(t') as (M (5))j<m.

For a multiplicity annotation 7" of a term ¢ and a multiplicity
type ¢, 1" and ¢ are consistent if T' is the multiplicity annotation
defined as above from some derivations of ® . ¢ : ¢ with some ®.
We also call such pair (7', ¢) consistent pair for t. Conversely, for
(T,) and ®, such derivation is unique if exist; thus, for a closed
term ¢, we (can) identify consistent pairs (7', ¢) with derivations of
Fct: .

The next proposition gives a sufficient condition for consistency,
which can be used also to automatically guess consistent multiplic-
ity annotations. Before that, we prepare terminology and a lemma.

A multiplicity annotation 7" of a term ¢ is constant with k
(k > 0) if, for any subterm ¢’ whose simple type is int™ x

E (1), TW)G) = kif r; — 7, is depth-1 and
j=1\Tj J J J p

T(t')(j) = 1 otherwise. Similarly, a multiplicity type ¢ =
{ILL, int x [T7, (@5 — ¢5) | M} is constant with k (k > 0)
if M(j) = k for every j such that f; is depth-1, and also all
the ¢; and ¢ are constant with k, inductively. For a multiplicity
type judgment ® . ¢ : ¢, we say it is constant with k if all the
multiplicity types in ® and ¢ are constant with k.

Lemma 8. If ® . t : ¢ is constant with k, there is a derivation
of ® ¢ t : ¢ whose all the occurrences of judgments are constant
with k.

Proof. By induction on ¢: for any ® . t : ¢ there is one rule-
schema among the ten rule-schemata in Figure 12 whose conclu-
sion part agree with ® . ¢t : ¢, and there is at least one rule
instance of the rule-schema whose assumption part consists of only
judgments that are constant with k. O

Proposition 9. For a multiplicity annotation T' of a term t and
a multiplicity type ¢, if both the T and ¢ are constant with some
common k > 0, then T and ¢ are consistent.

Proof. For given T and ¢ that are constant with k, let x be the sim-
ple type of ¢; then, we can infer a simple type environment I" such
that I' - ¢ : k. It is clear that the mapping from multiplicity types
that are constant with & to simple types is bijective; by this corre-
spondence we obtain from I' the multiplicity type environments ®
whose all the multiplicity types are constant with k.

By Lemma 8, there is a derivation of ® I-. ¢ : ¢ whose all the
occurrences of judgments are constant with k. Since 7" is constant
with k, T is equal to the multiplicity annotation defined from the
derivation of ® - ¢ : ¢. O

G.2 Multiplicity Annotations for Reduced Terms

Here we prove the subject reduction property of the type system for
multiplicity types, and then we define a multiplicity annotation for
areduced term (used as 7” in Lemma 14).

Lemma 10 (Substitution Lemma). If ®1,2:¢1 Fc t :
D b Vi ¢y, then @1 Fc tfz— V] : ¢o.

¢2 and

Proof. By induction on the derivation of &1,z : ¢p1 Fc t: 2. O

Proposition 11 (Subject Reduction). If ® . t : ¢ andt — t/,
then ® H. t' : ¢.

Proof. Straightforward induction on the derivation of ® . ¢ : ¢
except for the case of ¢t = fix(f, Az.t") V. The case is shown by
using Lemma 10. O

Now, for a multiplicity annotation 7" of a term ¢ and a multiplic-
ity type ¢ such that T and ¢ are consistent, suppose t — t'. We
have a derivation of ® . ¢ : ¢ with some ® and by the subject
reduction we have the derivation of ® . ¢’ : ¢. Thus we have a
multiplicity annotation 7" of ' that is consistent with ¢; for this,
we write as T — T". It is easily shown that the definition of T” is
independent of the choices of ® and a derivation of ® . ¢ : ¢.

H. Soundness of Verification by (—)*

Here we prove Theorem 1, the soundness of the verification by
(—)*. The definition of consistency is given in Appendix G.

We prove the soundness by dividing it into four parts corre-
sponding to (—)**, (=)*2, (=)*, and (—)™:

Proposition 12. Leti = 1, 2, or 4. For a term t and a type T such
that T is at most order-2,

E)% (r)" EtoT

implies

Proposition 13. For a multiplicity annotation T of a term t, and a
multiplicity type ¢ over a type T such that T and ¢ are consistent
and T is at most order-2,

= (t)g? : (T)if Et:T.

The soundness theorem is an immediate corollary of the above
since each transformation preserves the property that 7 is at most
order-2.

All the above propositions can be proved in a similar way.
Among them, the case for (—)’jg’ is the most subtle since it use

multiplicity annotation; so we basically focus on this case.
We need the following lemma:

implies

Lemma 14 (Simulation Lemma for (—)*). For a multiplicity
annotation T of a term t, and a multiplicity type ¢ such that T
and ¢ are consistent, if

(with T — T')

then there are some natural numbers n, n', and a term t"' such that

(t)g? oy n’ (t/)ﬁa
n — TL/ = 2
1

TI
Proof. We prove the lemma in Appendix I. O

t—t

if the redex of t is of the form of application
otherwise.

As seen above, (—)* (and also (—)*' and (—)%) does not
“simulate” reduction exactly on the number of reduction-steps
when a redex is of the form of application. For this, a proof of
Proposition 13 has some complication since the semantics of types
is given by step-indexed logical relation, (which was adopted to
prove the soundness of the refinement type system in Appendix B).
We separate such the complication and put into Lemma 18: i.e.,
we introduce another semantics of types =", which is defined in
Figure 13 by usual logical relation without step-indexing; we prove
a certain equivalence between the two semantics in Lemma 18; and
we prove Proposition 13 with respect to |="F.

From the above lemma, we have the following:

Lemma 15. For a multiplicity annotation T' of a term t, and a
multiplicity type ¢ such that T' and ¢ are consistent,

*

o ift —™ V (with T —" T') for some n, then (t)gﬁ —
(V)?, and (V)gf’, is a value,

o ift —* fail, then (t)% —* fail,

o ift 1, then ()% 1.

Now we prove Proposition 13. We write =, for the observa-
tional equivalence.

Proof of Proposition 13. We prove that

LR LR
E@F ()l Sk
by induction on the size of the simple types of 7. For ease of

presentation, we use the inductive definition of 7 in Section 2.1
and omit the product case.

7 ={v:int | P}|From Lemma 17.

[t ={f : (z1:71) = 72 | P}| By assumption,
if ()5 —" A'then =00 A ({f « (m1:m) = 72 | PHE.

Now we suppose t —" A and show that

implies

10)
an

‘IjR A:(z1im) =12
SRP[f e Al

’(Predicate) ELR C{P: closed}‘

o =R Ve P BUN ELR Pz m] for all integers m

o ELR PLA P, &5 LR prand ELR Py

o FgRtgA—trueforallAst t—" A

’(Value) ELR C {V : closed} x {7 : closed}‘

def

cERV i {vio| P} S ERVie and ELR Py V]

o EIRV int £ V = m for some integer m

RV (2 i) o ZL for all Vi,
LR VL« 7 implies EXR V'V : [z — VA

n def,
® ':\I;R (Vla~~~7Vn) : Hi=1 (xl : pi) <:€>
LR V, : pi[l‘ll—)‘/l,...,mi_ﬂ%vi_ﬂ for all ¢ g n

[(Environment) = C {n : each value is closed} x {T' [Feur '} |

def
o P =R) ES true

e pU{z— V} MR F,x:Tgn%IgRF and MRV
7[n]

[(Term) MR C {(T,¢,7) | T e 7}

def

o ':LR t-
RA:T for allns.t.n =% Dand forall As.t. t[n] —* A

Figure 13. Semantics of types without step-index

By Lemma 15, A is a value—so let A = fix(f, Az1. tg)—and

B fe 1)

for T" such that T —" T’ and m :f T'(A); hence, by the

assumption,
e

P[ftlel tli<m [fi— fix(f, A1 (tg

()5 —" (A)% = fix(f, Az1. (

‘L,‘R ﬁx(f,)\x1 t2 : (Z1: (7-1)231) - (7—2)2532)

where fti, ..., fty are all the occurrences of (application of) f
and suppose ¢ = {¢1 — ¢2 | M }; these mean
N i (f Az (02)5 [Fs T 1) ¢ (s ()2) = ()2
(12)
Pf s fix(f Aar (0208 [f = F DL (3)

Now we prove (10), i.e., for given V1 such that |:V Vi:mn
and A such that fix(f, Az1.t2)Vi —* Az, we show
ELR Ay e = VA (14)

Since 7 is at most order-2, by using the reduction inspection
method in the proof of Lemma 18 (see Appendix J), we can assume
that V1 is in the following normal form:

Az. case x of m; — N;

N :=m
| My — Np
_—=Q

f'—>? Ni<m

where 7 is any natural number, meta-variable m runs over order-0
values, and €2 is some diverging term of a given type. Then, since
Vi is in this normal form, it is clear that there is a derivation of

Fc Vi @ ¢é1; hence, we have a consistent pair (77, ¢1) for V;.
Since):I;R Vi : 71, by Lemma 16,

E (V)R ()

From (T", ¢) and (T}, ¢1), we obtain a consistent pair (T3, ¢2) for
ﬁx(f,)\{E1. tz)Vl. Then,

(fix(f, Az1. tg)vl)ﬁs,
= (pry (ix(f, Az1.t2))5) (Vl)

= (prfix(f, A\z1. (tz)gf’, [f+— ?m])m) (Vl)g?{
— fix(f, Az1. (tz)g&’; [f,_>7m]) (‘/1)‘13{ _

Hence, by (12) and since =% (vl)”;, : (7'1)5;‘1
1

':LR (fix(f, Aml‘tQ)‘/l)gi’ : (7'2)2;“2 [x1— (Vl)i?{]-

Here 1 occurs in (Tz)(u;z only if 71 is order-0, because, after (—)
function variables must be declared inside of each refinement types.
If 7, is order-0, (Vl)gi‘, = V4 by Lemma 17, and

1

(72)% o1 (V1)2] = ()% [e1 - V] =

f1

(r2[z1 = VA,
Hence,
U (fix(f, Az 12) V1)
Now, by induction hypothesis,
':LR ﬁx(f, A:EL tz)Vl T2 [1'1 = V1] .

Since fix(f, Az1.t2)Vi —™ As, we have shown (14).
Next, we prove (11), i.e.,

RPIf = fix(f, Az1. t2)] .

Since f has a depth-1 type if f occurs in P, by (13), it is enough to
show

: (T2[2?1 d Vl])gf’z

fix(f, \e1. t2) =0 fix(f, Az (£2)53 [f 7m})

assuming these terms have depth-1 types. We only have to show
that, for any closed value V; of ST(71),
AT

ﬁx(f,)\xl t2)V1 =0 ﬁx(f,)\331

since the observational equivalence is extensmnal. Now since V1 is
order-0, ¢ Vi : ¢1; thus we have a consistent pair (77, ¢1) for V4
and (T3, ¢2) for fix(f, Az1.t2)Vi. Then,

fix(f, A\x1.t2)V1
=, ta[z1 = Vi|[f — fx(f, Az1. t2)]
=, {by Lemma 17}
(talz1 = VA [f = Bix(f, Aar t2)))
=, {by Lemma 19 in Appendix I}
(t2)5 [z~ (V) A= (fix(f, Ay t2))5]

=0 (t2)% [> (v1> 1 = fix(f, A (tz)T, Ty
=, fix(f, Az1. (f|—>?

9 f)

=, fix(f, Az1. (

Lemma 16. For a multiplicity annotation T of a term t, and a
multiplicity type ¢ over a type T such that T and ¢ are consistent
and T is at most order-1,

e R @F (0F -

Proof. By induction on the size of the simple types of 7, similarly
to the previous lemma.

7= {v :int | P}|From Lemma 17.

IT ={v:i(xz:m)—> 72| P}‘ By assumption, if t —™ A, then
15)
(16)

implies

‘IjR A (z1:71) = T2
SEP[fes Al

Now we suppose ()53 —* A’ and show that =L® A’
f:(z1:m) = 72| P})zf’.

By Lemma 15 t does not diverge and by the assumption, there
is some value V' = fix(f, Az1.t2) and n such that t —" V; so
we also have T —" T" and m = T" (V).

From (15) and by Lemma 15,

A= (V)8 = fix(f, Az1. (02)5 [)
and it is enough to show
VR (A (12)5 [Fo D) (e ()E) = ()0
)
LR plf s fix(f, Aer. ()5 [fs £D). (18)
Now we prove (17), i.e., for given V{ such that =58 V/ -
(7'1)553] , we show
LR fix(f, Az (82)5 [f = DVA : (r2)28 [V]
(19)

Since 7 is order-0, . VY : ¢1; hence we have consistent pairs
(T1, ¢1) for V{ and (T3, ¢2) for VV{. By Lemma 17, V{ =,
(Vf)gi} and =57 VY : 1. Hence,

fix(f, Az (82)53 [f — 7w

— (82)5 [or o VI > Bx(f A2 (822 [F s D)]
=0 (t2)ff [er s (V)11 = (Vi)
= {by Lemma 19 in Appendix I}
(t2]a1 Vﬂ[fHV])fZ,

* AL
— (VVl)TZ, .
Now from (15), 2% vvY
hypothesis,

LR (VV{)QZ, ¢ (r2[z1 '—>V1/])i;1 = (7'2)553;

: To[z1+— V7], and by induction

[ml —> Vll} .

Thus, we have shown (19).
Finally, (18) is shown from (16) quite similarly to the proof of
Proposition 13. O

Lemma 17. For a multiplicity annotation T of a closed term t,
and a multiplicity type ¢ over a closed type T such that T and ¢
are consistent and T is order-0,

O =7

J and

®F =o

Proof. On types, it is clear by definition.
On terms, it is clear from Lemma 15. O

Lemma 18. For a term t and a type T of at most order-2,

Etor iff Nt
Proof. See Appendix J. O

The main reason for the restriction of order in Theorem 1 is in
the proof of Proposition 13 above, which depends also on Lem-
mas 16 and 17; and the restriction is not essentially due to the re-
striction in the above lemma. The restriction in the above lemma it-
self may be avoided if we choose some other semantics that is “step
irrelevant” one (say, denotational one) and also keeps the soundness
result for the refinement type system. Or, the above lemma may be
able to be generalized to any order of types.

H.1 Proof of Proposition 12

Proposition 12 for the other three transformations is proved simi-
larly to the above proof for (—)“. The only subtle point is the base
case for (—)*.

As explained in Section 3.1, by (—)*,

(f1, f2) =
{(f1, f2) : (int — int)? | Va1, x2. Plfi 21, f222]}
is transformed to:
Jix f2:
((z1,z2) : int X int) — {(r1,72) : int X int | P[r1,r2]}.

By the semantics of types, the former is equivalent to

for all 4, z; and A if f;z; —" A, then A is value (20)
and for all 1 and x2, =p P[fi71, f222], (21)
while the latter is equivalent to
for all z1, z2, and A, if (f1z1, foxe) —" A, 2
then A is value (V1, V2) and =, P[V1, Va],
for all z; and A, if fiz1 —" A, 23)
then A is value V and =, P[V, 1],
for all z2 and A, if foxs —™ A, 24)
then A is value V and =, P[L, V],
and =, P[L, 1]. (25)

Here (23), (24), and (25) happen because our fi X f2 is not just
A1, x2). (f1 x1, f2 z2) but utilizes L as explained in Section 3.2.

Now the implication from the former to the latter and that from
the latter to (20) are obvious.

To show (21) from the latter, only the case when fix1 or foxo
diverges is subtle by the following reason. First by the assumption
of use of “branch-strict if”, every occurrence of application must
be evaluated if before that there is no effect happens. Also, by
the assumption that a predicate does not contain fail, in predicate
fail essentially does not happen. Le., if f;x; fails in the former, it
happens also in the latter. Thus we only have to take care about
divergence that f1x1 or foxs may involve.

If fiz1 or faxo diverge, we cannot use (22), (23), and (24).
On the other hand, we can show =, P[fiz1, fax2] by (25) as be-
low. In the evaluation of |=p P[fiz1, fox2], since, as explained
above, every occurrence of application must be evaluated if be-
fore that there is no effect happens, and fiz1 or foxs diverge,
P[fiz1, faxz] must diverge, because if P[fix1, fox2] fails before
the evaluation of f1z1 or faxe, =p P[L, 1] also fails.

I. Simulation Lemma

In this section, we prove Simulation Lemma for f3 (i.e., Lemma 14).
First, we give several lemmas and definitions.

If®,2' ¢ et : ¢ and
: ¢ are derived, so is ® ¢ t[z' —t'] : ¢ (in a canonical

Lemma 19 (Substitution Lemma).
Dbt
way).

For derivations of ®,2" : ¢' Fc t : pand ® . t' 2 ¢, let T,
T', and T[T"] be the multiplicity annotations of t, t', and t[x' — t']
defined from the derivations, respectively. Then,

(te' =)oy = OF [()]

Proof. The former is straightforward by induction on derivations of
®,2': ¢’ -c t : ¢ and by case-analysis of t. We show only the case
t= ﬁX(f, ATq. tz).

lt = fix(f, Az1. tg)‘ For given derivations below,

S, 2" ¢, f:{p1 — ¢o | MY, z1: 1 b ta: @2 0
S,z ¢ b fix(f,A\z1.t2) : {Pp1 — 2 | M}

St g 0
we have a derivation © of (... Fc t2
esis, we have a derivation IH(D,D’) of (...
and the below for fix(f, Az1. ta[z' > t'])

: ¢2). By induction hypoth-
e tz[li/ >—>t/] : ¢2),

H(D,D')

O, f: {1 — P2 | M}, w1: 1 b to[z’ —t'] : ho !
O fix(f, Az1. ta]x’ = t']) s {d1 — ¢ | M}
We prove the latter part by induction on ¢; again we show only

the case t = fix(f, Az1. t2).
lt = fix(f, A\z1. tg)‘

(t[z' — t’])ﬁ;“[T,]
= (fix(f, Az1. o) =)3,
([

fi
= (fix(f, A\z1. t2[2’ t']))ug
1

T[T"]
= { etm & T[T (fix(f, Az1. t2]x n—)t']))}

fix(f . (bl)5, T

= {because T'[T"]| ¢, [z s ¢/] = T\tz ['] from proof of the former}
fix(f, A (02)5, [()21 7]

= fix(f, Az (t2)5], [fn—>7 [IH (#)E)

= {because m = T'(fix(f, A\z1. t2)) from proof of the former}
= (Bx(f, Aw1.t2))5) [=]
=0F [~ (¥)7)]

O

In evaluation contexts, [| does not occur in the scope of any vari-
able binder. Hence, we can regard [] as a variable and evaluation
contexts as terms, and we derive notions for evaluation contexts
from those for terms.

For an evaluation context E, (E)ﬁS is not an evaluation context
(only) when E = V E’. We modify this gap; for evaluation contexts

= fix(f, Az1. t2)[z' — t'].

59 op (V)8 (B, (0R)
At if ()% then (t1)!2 else (t)2
”T((BYE) (%

5 i (f . (02)2 [F D) (B)F
(where m = T(fix(f, Ax1.t2)))

(ﬁx(f, A:L'L tz) E)

(V, B, & (v, (B)E, ()
(priE)§ et pri(E)g:%’

Figure 14. (—)*: modified (—)*® for evaluation contexts

Figure 15. Step numbers of evaluation contexts

E, we define (E)ﬁTg in Figure 14 and the step numbers s(E) in
Figure 15. In both the definitions, we give special treatment to the
case of VE.

Lemma 20. . For any value V, (V)g?’ is a value.
2. For any evaluatlon context . and a multiplicity annotation T’

of E, (E)T is an evaluation context.
3. For any evaluation context E, a multiplicity annotation T of E,
and any term t such that E[t] is closed,

(B [1) = (B)F 1.
Proof. 1: Clear by induction on values V.
2: Clear by induction on evaluation contexts E.

3: Straightforward by induction on evaluation contexts £ and by 1;
we show only the key case of VE i.e. fix(f, Az1.t2)E.

(fix(f, Az1.t2) E)52 [[] 1]

= (pry (Bx(f, Azr. £2))2) ()22 [[] s)

— (profix(f e ()2 [£) (B[]~ 1])
— fix(f, Aen (t2)8 [F o £ (B (] 1])
—* B fix(f, A, (02)% [f = 7D (B 1)

= (fix(f,\z1.t2) E)% [1]

O

Now we prove Lemma 14; recall the statement: For a multiplic-
ity annotation 7" of a term ¢, and a multiplicity type ¢ such that T’

V (value)
A (answer)

=z |n|fix(f, z.t) | (Vi,...

:V|fail~

E (eval. ctx.) == [] | op(V, E, t) | if £ then t; else to
\Bt|VE| (V5D |pr,B

E[fop](n1, ...

7V'n)

o (n17...,nk)]—> 7nk)]

fail] — fail

if V then t; else t2] — E[t2] (V:closed, V # true)
fix(f, \z.)V] — E[t[f = fix(f, Az. t)][z+— V]]
pr (V17 ey

SINSS e o] tij\

[
[
[if true then ¢; else t2] — Et1]
[
[
[pr

V)l — E[Vi]

Figure 16. Reduction for open terms

and ¢ are consistent, if
t—t (with T — T")

then there are some natural numbers 7, n', and a term ¢’ such that

()7

e = {2 if the redex of ¢ is of the form of application

1 otherwise.

)k —m " "

Proof of Lemma 14. Lett = E[r] where r is aredex. By Lemma 20,

we define n % s(E) + 2 if r is an application, n Lof

s(E) +1
otherwise, and n’ s(E). Then, for each kind of redexes,
proof goes straightforwardly: for the redex of application, we use

Lemma 19. O

J. Equivalence between Logical Relation and
Step-indexed Logical Relation

Here we prove Lemma 18.

In the proof below, we use a notion of values that may include
variables, so we extend the definitions of values, evaluation con-
texts, and reduction as in Figure 16; we use meta-variables V',
for these notions. This extension is consistent since we so far used
only closed values, closed evaluation contexts, and reduction for
closed terms, and this extension does not change the notions of
closed values, closed evaluation contexts, and reduction for closed
terms.

Lemma 21. 1. Foravariable x and values V and V', V]z— V']
is a value.

2. For a variable x, a evaluation context E, and a value V,
E[z+— V] is an evaluation context.

3. For avariable x, terms t and t', and a value V, ift — t', then

tlx=V] — t'z—V]

Proof. 1 and 2 are clear by induction on V' and E, respectively. 3
is also clear from 1 and 2. O

Proof of Lemma 18. If we prove the “if” part, the “only if” part
follows from that immediately.

For the “if” part, we prove the contraposition. For simplicity,
we omit product types. When 7 is order-0, the proof is clear. Let

T={n:(z1im) > 7 | P}

{VQ;

To:To —)T2‘P2

20

P {llu S (T Tw) = T | Pu}
T, = {Vus1 :int | Pyyi} .
We assume |~ ¢ : 7, which is equivalent to the below:
Iped{l,...
Iy < mo. VY. t —F VA
Ing <mo—ki1. IVI. ET* Vit A
ey <y V3. VIV —72 V3 A
Ing < ny—ke. IVa. 2

,U}. Elno.

Vo:im A

Mkp < npo1. IV Vg1 Voo —"2 V) A
In, < np_1—kp. V. EVP Vi A
WMhpir < mp. AL VoV, — 00 AL A

Apy1 = fail v
A q:value A ko < np — Ky
A" £ true. Ppi1[vp+1 »—)A;+1] — ko2 g/

We show F£R ¢ : 7, which is equivalent to the below:
Ipe{l,...,u}.

IVt — VATV SR VT A

AV VIV —" Vs A Ve EXR Vi A
NV, V) Vs —" VI A TV, VR Y,
Ay 1. VoV —" A A

T N

Apy1 = fail v
(Ap 1 value A A" # true. Ppi1[vpr1— Ay —* A
(26)

Proofs for both the cases that A}, ; is fail and that Aj, ,, is a value
are similar, so we show in the latter case. Witnesses for p, Vj’ s
A;H, and A’ are those from the assumption, while from V; we
create V;° that “behaves as V; in the current context” and fits to the
above goal.

Now 71, ..., T, are at most order-1; so suppose—ignoring re-
finement predicates—that

1 1 1
T =T —...T;; = T

Tu=T1 —...7, = T"

where all the types T? are order-0.

def

Letk = 1+ X;cq1,... p+2} ki. From now, we define sequences

(@)

(V)icqr,...n) (V)ie{1,...h}

(q")1e{1 w0)16{1 m (e m @7

()1E{p+1 h} (m)ze{p+1,...,h}

GMictorrrny D iciprr,ny
where h is at most k. _ o

Fori € {1,...,p}, we define VC Ly, @ Ly e e
and n® & n;. From the assumption, fori = 1,...,p,
(4) q(®) (4) (4)
=y y® 7'<1)—> l(,)—>7'q .
4G

We reserve enough number (at most k’)_of fresh variables v1, vo, . . .,
and then for o_each i < p we define V(” def v, if V' has function
type, and T 9y @) i YO has order-0 type. Also, we define

def (

P = let Vp+4+1 :tV“) Vp) in Pp+1 .

From the assumption,
P[’UZ’ = V“)]igp —)k A/ .

So far, we have defined the sequences (27) for ¢ < p; from
now, we define for ¢ = p + 1. We find “v;-redexes” of P, i.e., let
(E®+D P+ be—if exists—a pair of an evaluation context
and an order-0 (closed) value such that

p . gt [vjm(p+1)]

for some j < p; such j is unique since the reductions gets stuck

here, and we define j? +1) a5 such the unique j. In fact, the reduc-

tions gets stuck only at this form of redex, and otherwise P —*
A’. This is shown by case analysis of the kinds of redexes as be-
low: (i) P has only such free variables that their type is (first-order)
function type; (ii) hence, all the redexes can be reduced except for
function applications whose function parts are variables; (iii) thus,
if there is no stuck of the above form, P —* A" for some A"; (iv)
A" has type int and hence has no (function) variable, so A” = A’
by Lemma 21.

Now we show that the reduction sequence of P is “sufficiently
long”. First, if 1 < j®*Y for some &} and some value V5

Vv KT,

since if this reductions gets stuck, j**1) becomes 1 by the defini-
tion. By Lemma 21,

V)1 VO] = VO 8 Py s VO]
and since V{V“) is closed term,
Var =V =V) and ki =k .
Next, if 2 < j<p “), similarly to the above, for some k5 and some
value V3
AT v
By Lemma 21,
(V;V@))[Uz’ — V(i)]i:1,2 = ‘/QIV(Q) e Vé [vi V(i)]i:Lg
and since V4 V® is closed term,
Vilvirs VOlisio = V4 and k= ks.

Repeating this, there exist values V(i = 2,...,j®"))—let

V;(pﬂ) be of the form fix(f, Az. t)—such that
P—"letvy =iV VP inp,

—k2 et Vptl = V;Vm .. .V<p) in Ppy1

v(p+1))

k. — — —(p) .
— Pt et vpiq = Vj(p+1)V(J ..V(p> in Pyyq

—(i(p+1) _
=let vpyr = fix(f, 2.)V) VP in By
— let Vpt1 =

_ —(;(p+1) _
tr v, [f = Ve V0T
in Pp+1

Ly E(p+1)[vj(p+1)m(l)+l)]

21

Hence, by Lemma 21, there exist & > 1 + 2, < w+1 ki such that
Ploi» VOlig, —* (BP0, 5 VO[T) D)

where E®PY [, — V], is a (closed) evaluation context. Since
Plv; — V(l)]ie{l ,,,,, »} —k A’ there exist A®+1) and kP+D <
k— k' <3, i+ ki such that

YT) PEY 441y
Since

nGPT) CRa MeSansd @)
v

Ty e T

and from the assumption
+1
BT < Yis otk Snjmen

we have

Gy (1) 1 (5(Pt1))
n k A(P+). .q

q(j(P+1))
T — .
v T(j(P+1))+1

-
Thus, A®*Y is a value; we define

y 1) def 4 (pt1) pPtD) def L GEED) o)

def (j(p+1) def (;(pt1)
q(P+1) Lef q(]) ploth) et G)+1
then,
n(PTD) o (pr1) | gPtD) g(PD)
v 14 I T .

Also, we define V(pH) def Up41 if V®+1) has function type, and

TEr Al y o) i D) has order-0 type. We have defined
the sequence (27) fori = p + 1.

For the next round, i.e., for i = p 4 2, we find “v;-redexes” of
E®TD [V<p+l)], ie., let (EP+? m(P+2)) be—if exists—a pair of
an evaluation context and an order-0 (closed) value such that

E(p+1)[v(z7+1)] _ . pet2) [Ujm(p+2)]

for some j < p + 1; we define j(p+2) as such the unique j.

Repeating as above, (formally, by induction on ,) for some
h < k, we obtain the finite sequences (27) y such that the following
holds forany i € {p+ 1,...,h}:

1. j < iand
(i—1) [77(i—1) * (i) o (1)
E \% | —" B v;ym™]

(p+1)

where we regard EP)[V] as P; also we have

EWT™M) —r A

2. for some k' > 1+ %, kj,

P *)kl E(i) [’Uj(i)m(i)}

i i(1) i i(1) i (1) i
3.4 = qu) O 0D O 2 Y@ 5
A O RN AR V2O
@ @) _q® ¢
Fvo VVirly oo
where if 79 = lyy +1,then 7l — ... — 71 s regarded
as 79"
In the above inductive definition of the sequences, we explain

i(4) i
nU")—k® > 0 in the case when i > p, which is a bit subtle.
First, for any ¢, 2 above can be shown in the same way as the case

when ¢ = p + 1 above. Now for any natural number e,

n@ = 0@ = 09 (p0 40y
_ n(j[e](z‘))_(k(j[e—ll(i))+ . +k(i))

where ¢ &f j(j[c__”(i)) and jIO® €' ;. Let e be a natural
number such that G < p: since now i > p, e > 0. We prove
n@") _g® > 0 by showing
ile—1](4) ; ilel(@)
k.(])+ L. +k(z) < 2j>j[c](i)kj < n(])

Since j["‘](i) < p, the right inequality above follows from the
assumption of this lemma. By the above 2 where we substitute
3171 for 4, for some k' > 1+ it ky,

jle=11())y

P _>k' E(][(j[e—ll(i))]

[Vjte1ym
and also by the above 3 where we substitute j[e’”(i), ..., 1 fori,
[e—1](i))

POl 1)

(€] ile—1](3)
Sk 7aY)

VAR OB VO]
Hence, by Lemma 21, k' 4 RO L < k; thus,
Je—1](i) i
k(J)++k() Sk_k, §2j>j[e](i)kj'

Now, by using the above sequences, we define V;° for the

witnesses of our goal. For each ¢, we define a finite set DW def
{i'|i = }; by the above 3, for each i’ € D,

V@) x|

Letq € {1,...,p}. We define V®° for i such that ¢ = ¢.
For i such that ¢ = gand r® = lg+1, we define y@° def v,
which is a value of order-0. Next, by induction on r = I, ..., 1,

for any ¢ such that q(i) =g and r® = r we define V®° as

\z. case z of m() — yU°

m(id) N V(id)o
=0

. def
where {41, . .

Now, we show (26) with V®° as witnesses of 3V; for i €
{1,...,p}. -

By the induction by which we defined V®® it can be easily
shown that, for any 1,

i O])
R VUO:Tf(i) == 71
Also, by the same induction, it is clear that, for any i and i’ € D(”,
VO o D7 thus, for any i, since B9 [v; — Ve,
is an evaluation context,
. o (i) © .
(EDw; » VO) V7 m)

. o o (28)
— BV » VO ecn) VO],

yia} = DWand Q@ = fix(f, Ax. f 2)A\xri1. ... 21,.0.

22

M (programs) ::= (1, ...,Zm) | if z then M; else M>
|let z =ein M

t (terms) n=e|if zthent; elsets |letx =eint
e s=n|z|op(xi,...,Tn)
| fix(f, AN(z1, ... 2n). t) | f(z1,...,2,) | fail

Figure 17. Normal form before (—)*

Now, P has the following “reduction”:
P
SN E(p+1)[vj(p+1)m(p+1)]
_s* E(F‘Fl)[v(lﬂ’l)}
s E(zfl)[V(Lfl)]
* (1) o (1)
— F [’Uj(l)m]
syt E(z) [V('L)]
774)* E(h) [V(h)]
_>* A/
where the dashed arrow --+* means that, if we substitute V®? for

v; for all ¢, there is the reductions by (28). Thus, by the substitution
and Lemma 21, we have

let v =tV v®%inp,
Plus s V1.
[vj li<n
. o ()\ ©
N (E(P+1)[vj,_>v(l)]jgh)[V(J P+ m(p+1)]

N (E(p+1)[vj s V(i)o]jgh)[V(Ml)o]

" (B = VO) VO

* i i)° iY°
—" (B[= VO) VO m)
=" (B > VO) V]

" (B = VO)V
—* A/[vj Hv(i)o]jgh = Al
where recall that
V(i) —y® _y®°
if the type is order-0. This completes the proof.

K. Definition of (—)*

In this section, we define this refined transformation (—)ﬂ/. The
refinement is needed for both (—)* and (=), so we define
(—)ﬁ/34, which is a modification of ((—)*)*, and define (—)ﬁ/
as ((—)%)ﬁ§4. Note that (—)*2 is identity on terms.

For the simplicity of the definition, we assume without loss
of generality that input programs of (—)u/ (and hence (—)*') are
in a variant of A-normal form defined in Figure 17. Here, we
write A(1,...,2y).t for Az.let 1 = pryz in ...let z,
pr,x in ¢ where z is a fresh variable.

We redefine the transformation (—)’jl according to the normal
form; the essential part of the new definition of (7)ﬁl is shown in

(Bx(f, Mz, z)) E fix(f, Az ()21, 20))
(let z = f(z1,...,2,) int)" of
let z = f(z1,...,2n) inlet z = pr;z in

let 1 = pr,(pryz) in..
) [, ...

.let xj, = pr,,(pr,z) in
bl an = x’/n]

Figure 18. (—)** for normal forms

t = (z1,...,%m) | if zthent; elsets |letx =eint
ex=n|op(z1,...,zn) | Gx(f, XN(21,. .., 20). 1)
| f(z1,. .. zn) | (1,...,2n) | pr;z | fail

Figure 19. Normal form before (—)ﬁé‘1

Figure 18. Output programs of this (—)jil are in another normal
form defined in Figure 19, which is the domain of the transforma-

tion (—)*4, which is defined in the next subsection.

K.1 Definition of (—)%4 and Soundness of (—)ﬁ'

Here, we formalize the idea explained in Section 4.2 as a transfor-
mation (—)%34.

The transformation of (—)ﬁ3‘1 for types is the same as ((—)%).
Figure 20 shows the definition of (—)25”4 on terms. The defini-
tion uses an auxiliary function InstVar defined below, and this
is the essential part: InstVar synthesizes new applications (like
fg (z,x)) and inserts the assumptions illustrated above. In the fig-
ure, B is a set of bindings (i.e., pairs of variables and expressions)

that are used in InstVar. As (f)ﬁj?‘, (7)25‘4 also depends on a
multiplicity annotation 7". Since occurrences of subterms of ¢ cor-
respond variables in the normal form of ¢, a multiplicity annotation
T is defined as a function from variables to multiplicities. The
rules are almost the same except for applications, where we in-
sert assumptions related to the function and its arguments by using
InstVar.

Now, we define the auxiliary function InstVar:

InstVar(g, T, B,t) = Lof

Ay.let z = gy in
let w7 = B((al);) in
let ¢’ = e g/]
let w97 = B((a¥);) in
assume (p) ; assume (p') ; =
(29)

the function

where (a}); € [L;c,. App; and k = ‘H]Em Appj |
Bg, the two formulas p and p’, the set Appj and the variables

w33 are defined below.
Before the formal definition of the predicates p and p’, we ex-

plain their semantical meaning. By (—)* and (—)*, each vari-

able is unchanged (i.e., (z)* 4f 2 and ()% ECIPY although

by (—)*, each subterm of a function type (i.e., fix(f, Az.t) and
f in fix(f, Az. t)) is duplicated, and by (—)*, each subterm of a
tuple type (i.e., (t1, . .., tn,t1, . .., tm,)) is transformed to the prod-
uct of the functions, where the product of functions t and t' means
Az, 2"). (tz,tx"). Hence, a verifier cannot necessarily infer that

23

u/ def u/
7= (07

((3:17 ~~~7$n,fl, ,fm))gé,% d:ef
(wla “'7m7’l7)‘(y17 . ,ym) (fl Yty ooy fm y"l))

(if = then t; else t2)§§43 4" if 2 then (1&1)’134 else (tg)ﬁ34

u34 def

(letz =eint)y = letx = (e)25”43 1n(t)ﬁTf“B

if e = n, op(Z), (Z, f), or fail

ﬁ34 def

(let x = ein t)T = letx=(e)23’4/3 in (t)ﬁTS%u{w:e}

ife=f(,g),orpr,x

(let z = fix(f, A(z1, . .. Baq def

., gm). 1) in t)T’B =

(¢)54 s> prozilizalg; = 97]<m

yTny g1, - -

let z = fix(f, A(z1, ...

1 def
where t;, =

i def —j—1 —m—j

FE Aygopr((pr oz (L0 Ly L))
(6)2}43 EE if e = n, z, op(Z), or fail
(f(xl,...,xn,gl,...,gm))”u 4 Instvar(f, T, B, tm+1)

where z & (z1, ..., 2 Gm Ym))

Ty AYj- (91 Y1,y -o-
tr = pr, (F(Z7P))

tit1 o InstVar(gj,T,B,tj) (forj=1,...,m)

Ly def
((mla"'7mn7f17"'7fm))g§,4B :e
($17~--71‘n7)\(y17---7ym)~(fl yl,,fmym))

(int)’i%‘1 def
pr; = pr;r

T,B

4., def —j—1 —m—j
(pr;7z) 2 = Ay.pr;((pr, o 2)(L° Ly, L 7))

where n and m are the numbers of the integer components
and the function type components in the simple type of z,
respectively.

Figure 20. Refined encoding function refinement (—)’jé‘1

function variables behave as the product of duplicated functions,
while they in fact behave so since they are instantiated with some
closed ground terms in programs. The assumed predicates p and
p’ state just that all the function variables behave as the product of
duplicated functions (p and p’ correspond to “product of functions”
and “duplication”, respectively).

Now let us return to the definition, which consists of the follow-
ing five steps.

1. Let z be 2’ if (g = pry,’2’) € B for some (unique) k and z’, or
be g otherwise.
Note that the types of variables such as g and z might become

different after the encoding (—)ﬁl. Before applying (_)ﬂ” the
simple type of z is of the following form:

son M . ’
int" x _Hl (7'] — Tj)
j=

and hence the type of g is of the form 74, — 74; in the case z = g,
we regard n = 0 and k = m = 1. After (—)*, (2)* (= 2) has
the following simple type:

m m (mj5)
int™ x <j1:[1 ((rj)k)™ 1:[((r))[HA]> (30)
where m; is the multiplicity of prj z, and we access to the
second component (function part) by prﬁ_). Also, after (_)ﬁ”
the type of g becomes ((Tk)g:)™= ((T,é)g:)™ (because of
the consistency of T, we can show that 7'(g) = m). Hence,
the type of ¥ = (Y1)ien, is ((T;g)’j)™ Note that variables
introduced when defining (—)ii , such as y;, have no “types
before (—)u/”.
2. Foreachj=1,...
, déf{(u)’ (v:pr;\z),(w:vu)eB}
J T depth(v) =

and then define “application information” of z at j:

,m, we define

App

App) U w1, Yo } (ifj =5k
App; def App;» (otherwise, if App;. is non-empty)
{(L,v)|(v=pr;’z) € B}

where y is the bound variable in (29).

(otherwise)

Let Term be the set of all terms. We define “argument part” as

(u,v,w) —u

def
arg; : Appj — Term = Uyl = Y
(L,v) — L
and “function part” as
(u,v,w) —wv
fun; : App; — Term = u =g

(L,v) — .

3. We further add the information of multiplicity m; for the notions
thus defined:

APP; &of { (az)zEm] € App; " | fun;(a;) = fun;(a1) }
arg’ ((a:i)i) < (arg;(a:)):

fun] ((a:);)d ffum(al)

arg; : Appj — Term'™,
funj : App; — Term,
4. We define “encoding of functions around g

Bg :[em APP; — [, Term

def * *
Bt ((aj);) = (prj (prt, 2)(argia, . .., argmam)))jem .
5. Finally, we define p and p’ in (29) as
ot arg;(a;) = arg;f(a;) =>
p = /
(aj)j:(af)€l1 e m APP} prjw<<<aj)j>> _ prjw«(aj),-»

jem, fun;f (ay):fun;f (oc;)

s def
p = &
*
(a;); €Il em 2pP]»
JjEmM, i€myj, pr;a;=(u,v,w)

(w = pripr]-w<<<a-7)-7)>)

where we prepare a fresh variable w(®3)3) for each application

(@j);-

L. Soundness of Verification by (—)*

Here we prove the soundness of verification by (f)u/.

First we remark that the difference between (—)* and (—)* is
just the assume-expressions by InstVar(—). For any terms ¢, t/,
assume (t) ;' <, t’ (since assume (fail) diverges); hence for
any term ¢, (t)* <, (t)*, and so

E ()% (1)} E ()% (1)

Theorem 22 (Soundness of Verification by (—)u/). Let t be a
closed term and T be a type of at most order-2. Let T' be a mul-
tiplicity annotation for ((£)")*2 and ¢ be a multiplicity type for
((T)’“)h, and suppose that they are consistent and T <, O.
Then,

implies

= (t)ﬁT/ : (T)i implies Et:7.
Proof. From now, we reduce the proof to Lemma 23; this reduction
part is almost the same as the proof of Theorem 1, so we describe

only essential points, simplifying the setting. Let 7 = 7 — int

where 71 is order-1, and for given Vi such that |:5R Vi1, we
prove E*R £ Vi @ int
By Lemma 16, we have =S% (Vi)* : (71)*, hence |=L%

(V1)ﬁ/ : (11)". By the assumption that ="F (t)uTl (7)i, we have

LR (0 (V)! : (int)*. Now, (tV1)F <. (&) (V1)" since the
left hand side is the right hand side plus assume expressions; hence,
LR (tVl)u/ . (int)”. Since (int)” is order-0, by Lemma 23
below, we have =% (¢V4)* : (int)?, and by Lemma 17, =1
t V1 :int. O

Lemma 23. For any closed A-normal form t (defined in Figure 17),
a type T of order-0, and a consistent pair of a multiplicity annota-
tion T of t and a multiplicity type ¢ over T, (t)ql and (t)T are
observationally equivalent; and hence,

() N Co VA A = () R CO L

Proof. Here we give only an overview of our proof and an example
to explain our intuitive idea; for meticulous readers, we give a
formal proof in the rest of this section. In this proof, by “A-normal
forms” we mean those defined in Figure 19 (rather than Figure 17).

’
First, we define (—)%3* by eliminating InstVar from (—)uTM;

i.e., in Figure 20, we drop the subscript B and replace the case of
application with the below

def T
(f(xlw"7xn7gl7"'7gm))ﬁ34 = rl(f(7 (f>))
where

def ~
2= (T1se oo Ty AYj- (91 Y15 oy G Ym)) -

Since (—)ﬁ34 is just an A-normal form version of ((—)%3)*, it suf-
fices for the lemma to prove that (¢)ﬁ'54 is observationally equiva-
lent to (¢)7:”4 for any ground closed A-normal form ¢. That is, we
will prove that assume expressions inserted by InstVar(—) are
satisfied and hence can be removed without changing the meaning.

The assume expressions inserted by InstVar(—) are properties
satisfied naturally by the image of (—)?*, and in fact, it is easy to
prove that (V)ﬁé‘1 satisfies the properties by unfolding the definition
of (—)ﬁé‘1 in Figure 20. However it is not obvious if such V' are
arbitrary terms e, so we transform such (e)’jé34 to a term of the

form (V)’ié‘l. We call this transformation N-reduction; it is defined
similarly to evaluation, but keeps the form of A-normal form.

In order for N-reduction to terminate, we can assume that the
given whole (ground closed) term ¢ terminates, because when ¢

diverges, by Lemma 15 and since (t)n,34 <, (£)%34, both (£)*** and

(t)ﬁ'/34 diverge and then the current lemma holds. Since N-reduction
is simulated by the evaluation, if evaluation terminates, N-reduction
also terminates. ,

Though intuitively we reduce (¢)*34, in fact we define N-

’
reduction for ¢, and we show (—)m34 preserves N-reduction to
observational equivalence, i.e.,
’ i
t —n ¢ implies ()54 =, (')

Also (—)*4 preserves N-reduction to observational equivalence.
Now since N-reduction terminates for given ¢, we have the normal
form t’, and for the normal form of N-reduction, it is easy to show

()% = (¢)"
Thus we can show
()% =0 (¢)0 =0 (¢) =0 (1.
In the rest of this overview, we explain the above idea concretely
with the following example of ¢:
let f = fix(f', \z’.t') in
let x =3 in (€2))
let y = fxint”
where T'(f) is, say, 2.
Now (t)n:”’4 is

let f = fix(f, A(zh, 23). (t) " [o' > al])i1.2) in
let x =3in
let y =
let " = Ay1,y2). (let w = f(y1,y2) in assume (.. .) ;w)
in pr, (f’(z,2))
in (¢)%1
(32)
Since f in ¢ is bound to the value fix(f’, Az’. '), we could calcu-

late by the definition in Figure 20 that (the body of) f in (t)ﬂ‘s4 is
syntactically the product

Az, o). ()54 [2], ()% [> 2h])

of the duplication of fix(f’, A\z’.#’) (it is not the case if f in ¢
is bound to a non-value). Then, it is easy to show that such the
syntactical product of the duplication satisfies assume (...) (see
Appendix L.4 for details; especially, Lemma 27); here recall that,
as we explained in Section K.1, the predicates of the assume-
expressions inserted by InstVar(—) just state that all the function
variables after applying (7)%”4 behave as the product of duplicated
functions. Thus, we can remove the assume expression, and by
simple reductions, we have

let f = fix(f', A(z}, 24). (') [2/ = 21])i—1 2) in
let z =3in

let y = pr(f(z,2)) in (t”)ﬁé“ .

Now we want to transform the non-value pr, (f(x,x)) to the

form (V)ﬁ/34, as f was so and it helped the removal of assume as
above.

(33)

25

Clearly, the above is observationally equivalent to

let f = fix(f', Mz}, z5). ((t')ﬁ{“”4 ['+ 2}])i=1,2) in

let £ =3in

let y = pry (((£') [o = 2][f' > f])iz12) in (£)%1

Since our language is deterministic, pr; (¢,t) =, ¢ for any term ¢
(Lemma 26); hence the above term is equivalent to

let f = fix(f', Mz}, 5). ((t')ué“ [# = zi])iz1,2) in
let z =3in
lety = (t')ué“ [#'+— z][f + f] in (t”)ué“ .
We define N-reduction so that it reduces (31) to the following
let f = fix(f', A\z’.t') in
let z =3in
let y = t'[z" — 2][f > flint" .

(34)

(33)

It is clear that (—)ﬁ/34 of (35) becomes (34); thus, (—)ﬁ,34 preserves
N-reduction to observational equivalence.

As above, N-reduction is just evaluation but it keeps the form
of A-normal form. Repeating this N-reduction, fz in (31) becomes
some value V, and pr, (f(z,z)) in (33) becomes (V)’jg4.

Repeating N-reduction, we finally get its normal form of the
following form

let z1 = V1 in

let z, =V, inxz; .
Applying (—)ﬁé‘l, we have

let 21 = (V3)%4 in

let z, = (Vn)ué4 inz;
and applying (—)**, we have
let z; = (V1)% in

let z,, = (Vn)ttS4 inz; .

Since now x; has a ground type, so does V;; hence (V,L-)’ié*4 =

(Vi)na‘L = V;. Therefore, the two normal forms are observationally

equivalent, and so are (t)’j/34 and (t)n“,

In the rest of this section, we give formal definitions and proofs
based on the above idea.

L.1 N-reduction

From now, we define N-reduction. Though N-reduction reduces
terms before applying (—)ﬁg‘l, our intuitive idea is to transform
terms after applying (—)ﬁ,34 as above; so we put labels to A-normal
forms to track the information of the sets B in the definition of
(7)23’743. (Alternatively, we may be able to equivalently consider

reduction for (t)g&’:“B as “polynomial”, i.e., not as the application of
(7)213743 to ¢ but as a formal term consisting of 7', B, and t.)

We define labeled A-normal forms in Figure 21, where we fix a
countable set of labels and we use b as a meta-variable for labels. If
we drop all labels in labeled terms d and s, we obtain terms e and
t defined in Figure 19, respectively. We implicitly use this label-
dropping transformation to apply notions for ¢ to s.

s = (x1,...,2n) | if x then 51°1 else s5%2 | let z = d" in s
du=mn|op(xi,...,z,) | ix(f, AMz1,. .., 2n). s°)
| f(z1,...,z0) | (x1,...,2n) | pr;x | fail

Figure 21. Labeled A-normal forms

RJif z then s, "

{R[SI]
R

[s2]
R[let y = op(z1, . ..
Rllet y = ([op](m1, ...
b’
where x; ~>gr m; ¢
Rllety = (f (z1, ...

Rlcclet y = ('[x; — xili[g; — g;1;[f — f])b”

else 5,"2] —n
(if £ ~r 0")

(if 2 ~r m”,m #0)
7:cn)bl in sz] —N
by

ymn))" in 5™

STy 1y - - - ,gm))b1 in sb2] —N

in s"2]

' b’

where f ~~> g fix(f', A(z, . ..)

Rllet y = (pr;z)" in s"2] —sx R[let y = Ul % in 52]

/ !
yTns g1, - -

%
where x ~~ g (:cl7 CyTn) L Ti VIR, Ui

Rllet y = fail”" in 5"%] —y fail

Figure 22. N-reduction rules

We define labeled value U as
U :=n|fix(f, \(z1,...
and N-reduction context R as

=[]|letz=U" in R" .

,xn).sb) | (z1,...,2n)

For the definition of N-reduction, we need to prepare one rela-
tion: for R, z, and U, we write ~>p U® if x refers U” in R;
precisely, z ~»r U? is defined as below.

~ Ut <d:ef> false
Ub def

~ v b’
let z’=U’"1 in R"2

b 1" b / rrb b
x~r U or (zgU" foranyU" ,x=2,U" =U
Given = ~»r U?, U? is uniquely determined from R and , and
there is the unique triple of b and N-reduction contexts R|, and R’

such that
R=R|.Jletz=U"in R'"]

We can use R)|, as a context for U.
Any closed labeled A-normal form s is in exactly one of the
following three cases.

[(z1,...,2n)]

[if = then 51°1 else 592]

[let y = d*t in s%2)
Where d = op(z1,...

and @y U .

7xn), f(xla"'7

We will think the first case as normal forms of N-reduction; so we
define N-reduction rules for the other two cases.

We define N-reduction rules in Figure 22. Here, cclet is a kind
of commuting-conversion of let: for labels b, b’, a variable y, and

Zn), Pr;z, fail

b2

26

cclet y = (z1,...,2,)" in PA
lety = (z1,... ,xn)b ins’
. b1 borO . /b’ def
cclet y = (if z then s1"* else s2°?) in s =
. b b 01
if « then (cclet y = 51" in s)

b e b’ ba
else (cclet y = s2” in s)

by s o byl b’ def

cclet y = (let z = d’' ins*?) ins"~ =
/7 bg

“ins"")

let z = d" in (cclet y = s

Figure 23. Commuting-conversion of let

labeled A-normal forms s, s’, we define an labeled A-normal form

’
cclet y = s¥ in st by induction on s as in Figure 23.

N-reduction reduces labeled A-normal forms to labeled A-
normal forms or fail; hence, the normal forms of N-reduction are
either R[(x1, ..., zn)] or fail. It is clear that, if the evaluation of s
terminates, so does N-reduction of s.

L.2 (_)tt{\] : (—)%4 for labeled A-normal forms

We define (f)ui\’, which is a refined version of (7)%4 for labeled
A-normal forms for tracking the information of the sets B.

First, for an labeled A-normal form s, we define the set L(s) of
labels of s as follows.

CS)
L(if z then s, else s2"2) of {b1} U{b2} U L(s1

def)

() U L(s2)
L(let z = d** in ") L by} U {ba} U L(d) U L(s)
L(fix(f, ") = (b} U L(s)

L(d) Ly (d£fix(...))

We call a labeled A-normal form s label-disjoint if all the occur-
rences of unions “U” above are disjoint unions when we calculate
L(s) by the above definition. It is obvious that we have a canoni-
cal way by which, for a A-normal form ¢, we obtain label-disjoint
labeled A-normal form (¢)™.

Next, we give a way by which, via labels b, we can track the

information of the sets B in the definition of (—)2:343 For a label-

disjoint labeled A-normal form s and b € L(s),’ we define By
as in Figure 24; B} is merely the set B used at the position b in

Mz, ..., x0). 8

s when we calculate (s)ﬁT34 by the definition in Figure 20. Note
that, for labeled A-normal forms s, s and a context C' such that
so —x Cs], we have L(so) D L(s); hence, when further sq is
label-disjoint, for y € L(s), B;° is well-defined.

Now, given a label-disjoint A-normal form sy and a labeled
A-normal form s such that so —§ C[s] for some C and a
mulgiplicity-annotation T for sg, we define a (non-labeled) term
(s)ﬁTl‘fSD by induction on s in Figure 25, where we also define this
for fail, a normal form of N-reduction. For an A-normal form %o,

N
(=)T,(to)““'
Also, for an N-reduction context R such that so —>3 R[s] for

we write (—)ﬁTNt0 for

’
some s, we define (R)ﬁTNSO as

4 def
(e, =10
#x e 4
(let xTr = Ub1 in Rb2)Tl\;0 d:f let x = (U)gﬂa,ig;? mn (R)ﬁTNso

Rif @ then 511 else 5572 def { 0 if b= by orba
b Byi ifbe L(si)
Bll,et @=d"1 in s%2 def
0 if b =b;
1] if d = fix(f, \y. s/b”),b: b
By if d = fix(f, Ay. s’°), b € L(s)

{z =d} ifb=bs,d = f(z;), pr;z’
0 ifb:bz,d;éf(fi),prim/
Byu{z=d} ifbec L(s),d= f(z:),pr;z’
B; ifbc L(s),d # f(%:), pr;a’

Figure 24. B;: B used at b in the calculation of (5)2134

def

(($1, <oy T,y f17 seey fm))T,so =
(551, --~,xn7)\(yl7 7ym) (fl Y1, 7fm 'ym))
N def

. b b
(1f z then s ! else s» 2)
T,so

’ ’
if z then (81)’1%\7130 else (32)uTl\,Iso

#4 . ’ ’
(let o =a" ins")™ “lets = (@)1, in (9,
»80 by
.
(fail)iy, ' fail

Figure 25. (—) BN (7)%4 for labeled A-normal forms

Then, clearly

(RIsDS., = (R, (9]

For Lemma 25, which is the main lemma for Lemma 23, we
need the next lemma as well as notions of a s-sb context:

Su=lety=d"inl | let y = fix(f, Az. l)b1 in %2
| if 2 then [else s” | if = then s else
la=1[]|S°
and of a s-db context:
D:=lety=[]ins"
|let y = d°* in D% | let y = fix(f, Az. D®) " in s

| if 2 then D" else s | if = then s** else D"

b1 ba

For any s, d, b, S, and D, S[sb} and D[db] are terms of the class of
the meta-variable s.

Lemma 24. [. Given an s-db context D and fix(f, Ax. sb)b,, let

so & Difix(f, A\z. sb)b | and suppose that s is label-disjoint.

Then B;° = B;?.

. def
2. Given an s-sb context S and s°, let So =

that so is label-disjoint.
When s = if = then 5;"' else 52”2, By? = By) = B,°.
When s = let y = d*' in §'b2, B;? = B;°; further,

* when d # [() nor pr;z, B;? = B;°,

S[s°] and suppose

27

* whend = f () or pr;z, B;) = By’ U{z = d}.

3. Given an s-sb context S and s°, let so = S[s°] and suppose
that so is label-disjoint. Let T be a multiplicity annotation for
so. Then

@, = ()i -
4. For a label-disjoint A-normal form so such that
so —rn D[fix(f, Az. sb)b,] ,
there is some D’ such that
so = D'[fix(f, \z. sb)bl] .

5. For a label-disjoint A-normal form so such that

so —% Rlcelet y = s” in s 1,

and a multiplicity annotation T for so,

_ b b’ N _ _ N s / ui\T
(cclet y=s ins)T’SO = cclety = (S)T,sg mn (S)T,sg'

Proof. 1. By induction on D.

2. By induction on S.

3. By induction on s and by 2 of this lemma.

4. By induction on the length of the N-reduction, it is enough to
prove that, if

’

so —n 81—~ D[fix(f,)\x.sb)b]
there is D’ such that
s1 = D'[fix(f, \z. sb)b].

We consider only the case that the redex of s; is application; the
others are clear. Hence,

s1 = R[lety = (f (z1,...

Difix(f,)\Jc.sb)b |=

STy Gl .- - ,gm))b1 in ssz]

Rleclet y = (s'[z} > zililgs > g;1i [+ £))" in s22]

11
v b

fWRﬁx(fl7>\(l‘g7""xil’gi7"'

By a-renaming, there is s” such that

3g;‘n)’s

’

D[fix(f, \z. sb)b] = Rlcclet y = §" b2]

in S2
b///

f~r fix(f, Mz, ..
If fix(f, Az. sb)bl

b’ . .
fix(f, A\z.s?)” occurs in s”. Since

<y Gm)- S

!
<3 Tn,y g1, - -)

occurs in R or sz, so does in s;. Otherwise,

111
b
1b

fWRﬁX(f7)\(m17'"7mn7gl7"'7gm)'8 ?

. b’ .
s" occurs in R; hence, fix(f, Az. s®)” occurs in s;.
5. By induction on s.

We here give a remark on the definition of labeled A-normal
forms. The labels for d are needed for the definition of (—)uN;
(=)™ and the labels for s in fix(f, Az. s”) with Lemma 24-1,3 are
needed for the proof of Lemma 25. On the other hand, the labels
for the other occurrences of s (i.e., s in if and let expressions) are
needed just for the induction on s in the proof of Lemma 24-3.

L3 (f)ﬁi‘l preserves N-reduction to observational
equivalence

It is clear that Lemma 23 can be proved immediately by the follow-
ing lemma.

Lemma 25. 1. For an A-normal form t,

54 _ (1b)”f\I
t = t .
o = (0"))
2. For a closed ground A-normal form t,
(0" —X Rl(z1,.. ., 2n)]
implies
(R[(z1,...,zn)])8 =,

and (t)'* —% fail implies

/

(R[(z1,-- -, xn)])ﬁTNt)

(fail) 4 =, (fail)?, .

3. For a closed ground A-normal form t, (t)'® —% s implies

(03 (0")% = (o,

Tt

In the proof of this lemma below, in addition to A.-calculus [11]
(the standard call-by-value equational theory), we often use the fol-
lowing reasoning principle, which we call referential transparency:

letz=tinClz] = letz=1tinC[t] (RT)

where the occurrence x in C'[z] must be free (and bound by the
let-declaration). Here we used contexts C[z] and C/[t] rather than
t' and #'[z — t]; this means that any one occurrence of x and ¢ are
interchangeable (and hence, so are all the occurrences, by repeating
it). It is clear that (RT) is sound with respect to the observational
equivalence of our language.

The axiom (RT) allows us to regard let-binding such as

=5 (s)ﬁT‘34 and

e (zx=t)in Bof (_)ﬁngB

.watb

as “an equation already proved”. Below, for a context C, we write
t = t' in C to mean that C[t] =, C[t']. For example, when
T ~R tb, it is true that x = ¢ in R by (RT), though x and
t themselves are not necessarily observationally equivalent. We
sometimes omit contexts C' if they are clear.

Below, when we write t = {...} ', “{...}” is an explanation
of why the equation holds.

By (RT), we can prove:

Lemma 26. [. Forany termt, prq(t,...,t) = t.
2. For any term of a tuple type, t =, (prit, pryt).

Proof. 1. 1)

pr,(t,t,t,...
—o {>\c}

let z = tin pry(z,t,t,...
=0 {(RT)}

let x = tin pr,(z,,t, ...

7t)

7t)

=, let z =tinpr,(z,z,z,...,2)
—o {/\c}

letz=tinx
—o {)\c}

t.

28

2.Similarly,
(pryt, pryt)
= let z =t in (pr,z, pryt)
=, let z =t in (pryz, pryx)
= letx=tinx
=1.

Now, let us return to proving Lemma 25.

Proof of Lemma 25.
1. Straightforward.

2. Since R[(x1,...,%xn)] is ground, z; are integer variables.

Hence z; ~~gr m;% for some m;, and so the both sides are
observationally equivalent to (mu, ..., my). The case of fail is
clear.

3. A proof on (—)* is obvious if we can prove the case of
(—)ﬁN. We show that, for a closed ground A-normal form ¢y,
(to)™ —% 51 —n 52 implies (s1)5%,) =0 (52)5,,

by induction on the length of the N-reduction; further, simultane-
ously we show that, if s; = R[let y = d°* in s°2],

(@ = (@)

to
T,B,9

in the context (R)mTIft0 [let y =[] in (s)ﬂTIj’to]. We show only the
case of application:

Rllety = (f (i, ;)" in 5"

S1

s2 = Rlcclety = (s'[x; }—Hm]z[g; ng}j[f'Hf])b// in sbz}

o (B A). 5))

since the other cases are clear. By a-renaming, we assume x; = x;,

gj = gj.and f = f.
We postpone to show

(F @ G, = (F @ G))

—i.e., to show that assume in InstVar(—) are satisfied—until
Appendix L.4 and show the remaining part first.
’

" b /
Since f < (fx(f,A(#,5)-5"")) " applying (-7, .
Fom e (Bx(f A 6)-8))5
T,to !

= fix(f, A(z1, ..

A
(R)

(36)

Szren)- (81, 57p)

where
rodef o\ 2k
s = (81) 2% o [wi = Prizilicnlgy = i li<m
El b/

—m—j

7y’L))

2z, def —j—1
pjk = Ay. prj((prn+lzk)(l

Now,

1 1 ~ b
(507, = (R)T et y = (F (&, 3) 70
1

NN
in (s)7]

8 #4 b, b N
(52)Tl\ft0 = (R)Tl\fto [(cclet y=s" ins 2)T7t0]
= {by Lemma 24-5}

1 N s 1
(R), [ectet y = ()5, in ()3,]

i1 N s i1
=o (R) 7, [let y=(s) TI\"tO in (s)TIt’tO]

and in the context (R)uTN (s)uTl\ftO],

wlety=[]in
(F (F,)i

= {Appendix L.4}
(f (xugj))nM
()

=pry (f (&5, g5 (95 ¥5)5)
= {by 36)}

prl(sklzk = (Ti, AY;- (95 yj)j)])kST(f))
(G
ey ()]

o (o385 b @2 5w),y)

ﬁ34
u34

[gj =
- —
Ay. pr; ((Ay;. (95 ¥5)3) (L, 9,
L)kgT(f))
_ 1\ 8
= pr,(((s)ty (93 M- 959,)
— 7\ 34
= pn(((s)T»B£9)kST(f))
= {by Lemma 26-1}
4
(5,);;;)9
= {by Lemma 24-1,4}
5
SoNe
= {by Lemma 24-3,4}

()7
T,tg *

N
1L

)

ksm))

L.4 assume in InstVar(—) are satisfied
The remaining is to show

(f @ gp))oe . =

T,B,

(f (x“gj))ﬁu

in the context (R)ﬁTlt‘tO let y = [] in (s)ﬁTIftO} in the proof of
Lemma 25. ,
First, let us recall the definition of (f(Z;, g’}))if“; t
By
fh def
(f(xla vy Ty g1, 7gm))’1§,4B;(1) - InstVar(f,T Bb17 m+1)
where

b o (F(@ g @ 9050)

(forj=1,...,m).
L, mA+1,
InstVar(g,T,B,t) = t

tit1 of InstVar(g;, 7T, B,ﬁ‘l’, t;)

From now, we will prove that, for j =1, ..

in the context (R)gi\”to let y =[] in (s)gﬂi\]to] where

def
9 = gj,

BY Blo, Ly,

def
gm+1 = fa by

29

Then, by applying this repeatedly for j =
reverse order), we get our goal, i.e.,

(f($17 L]

m~+1,...,1 (in the

/
ﬁ34

= tl
T,B}0
1

Tn;, g1, 7gm))

in the context (R)T ollety =[]in (s)ﬁTnth].

Thus, our goal is to prove
Ay. let x = gy in
1y, .
let w (@) = Bg((a})j) in
let g =

lot (=

k .
= Bj((a});) in
assume (p) ; assume (p/) 3T

i.e., to show that p and p’ above are satisfied and hence assume (p)

and assume (p’) can be removed. They are defined using B ((a;);),
which is defined in Step 4 in Appendix K.1 as
pr, Bi((5);) = pr, (pr',) (axg (a1), . .., axg), (@)

and by (30),

(mj)

o]
From now, we calculate a concrete form of pr;pr; Bi((aj);)-

Below, we use the next lemma; it is this lemma that we needed
to consider N-reduction for.

= 1 ((7)%)

Jj=1

2+ 1 ()

Lemma 27. Let v be a variable declared in R, i.e., v ~g Ubo for
some U and bg.

1. Forjem,t €m;, t = ((tj,i)iEmj)jem, andt' = ((t;',i)iemj)jgm,

i Jyt
implies
pripr]-((priv)t) = priprj((pru_ﬂ))t') .
2. Given't = ((tj,i)ien;)jem, § € m, and i, € m,
tii = tiw
implies
pr;pr;((prf,v)(t)) = prypr;((pro)t).

Proof. Roughly, 1 is because v is the product]_[Z j fi,; of some
functions f; ;, and 2 is because, for each j, (fi ;): is a replication
of some one function f;.

By unfolding the definition of (—)ui\’ and (—)ﬁé‘*, proofs
are straightforward because now v (before applying (—)ni\’) is
bound to a labeled value U, due to N-reduction. We give a
proof only for /. Since v has a product type, we suppose U =

(@hoooos@yrs oo).
Since v ~» g U, applying (—)ﬁTl‘ftO,
v~ 1 (x;7)\(y177y'lm’)(f{yi77f7/’n’ y:n’)) .
(R,
Then,

J

such that
/ " 1w b’ b;/
. #
Then, applying (—)7, .
/ 7 TN
13 ot (BXU A2 550) g
vt o

"

; "
) s H,))

for some ¢/, that does not contain variables 2/, for i’ # i (by the
definition in Figure 20). Hence,

pr; (fj (tj,i)ien;)
= pri((t;,,lv) t;'l,T(f_;))[Zg = tj,i]i@“j [fJ” — fJ/])
=t = tllf] = £ -
In the same way,
pr.pr; ((pri,v)t’) = t7:[] =15]1f] = fi]

/
3,10

= fix(f], M2, ..

By assumption, ¢; ; = t; ;, therefore

pr;pr;((prf,v)t) = prpr;((prfo)t).
0

m

Now, for a given (o;); € [[Appj, j € m, and i € m;, we
j=1
calculate more concrete form of pr;pr; B!((a;);) separately in

the following cases of pr;arg} (a;):

u

pr;arg;(a;)(= arg;(pr;a;)) = v
1

where the cases correspond to the cases in the definition of arg;.
In the case that pr;arg] (a;) = u for some w, there are v and
w such that

pr,a; = (u,v,w) and (v=pr; z),(w=ovu)€B

and then, after (—)%4, the let-binding (v = pr;’ z) becomes the
following let-binding

v:)\a.prj((prﬁ_,z)(J_,...,J_,a,J_,...,J_)) (37)
where a is in j-th position, and (w = vu) becomes
w = (vu)i2,, (38)
for some B’. Hence,
pr,pr; B5((e;);)
= pr;pr; ((pr’, 2)(arg; (1), ..., arg; (am)))
= {by Lemma 27-1}
pr,pr; ((pr&z)(J_, AU I arg; (o), L,..., J_))
= {B-equality since arg] (a;) is a value }
pr; ((Aa. prj((priz)(i, o, Lla, L, .., L)))arg;(aj))
= {(RT) on (37)}
pr, (v arg] (o,
= {since pr,arg;

pr; (v (u, .. 7u))

)

;) = u, and by Lemma 27-1,2 where m = 1}

)
(

: / . " o b’ blf’ = (Uu)ﬁ34
Now, since f; have function types, there are (ﬁx(i Axl s)) ’ T

= {by induction hypothesis, since w = vu is in B}
u/
(vu)T?’jB,
={(RT) on (38)}
w.
In the case that pr;arg] (a;) = y; for some | € my,

j=k priaj=y (9=pr;2) € B,

and after (_)%,4, (9 = pr;’ z) becomes
g:)\a.prj((priz)(L,...,i,a7L,...7L)). 39)
Hence,
pr,pr; B ((a;);)
= {similarly to the previous}

pr; ((/\a. pr; ((prLz)(J_, o, La, L, J_)))arg; (aj))
={(RT)on (39)}
pr; (g arg; (o))
= {since pr;arg;(a;) = y and by Lemma 27-1,2 where m = 1}
pr; (9?7)
In the case that pr;arg) (a;) = L,

pria; =(L,v) (v=pr;z) € B,

and after (—)%’4, (v = prj’ z) becomes
v=2Aa.pr;((prf,2)(L,...,La, L,...,1)). (40)
Hence,

pr;pr; Bg ((2)5)
= {similarly to the previous}

pr, ((/\a. pl‘j((pI‘LZ)(J_7 ooLla, L, ..., J_)))arg; (aj))
={(RT) on (40)}

pr; (v argj*-(aj))
= {since pr,arg(a;) = L}

1.

Now we show that, in the definition of InstVar(g,T, B,t),
assume (p) and assume (p’) can be removed; then, after that,
with Ac-theory, InstVar(g, T, B, t) is equivalent to ¢, which con-
cludes the proof of the lemma.

First, note that the equality = and the implication => used in p
and p’ are not genuine logical operators but boolean primitives, so
if two terms ¢ and ¢’ both happen divergence (or fail), ¢ = ¢’ is not
true but divergence (or fail), and assume (...¢ =t’...) cannot
necessarily be removed (and similarly for =>). Thus, it is important
to know if such ¢ and ¢’ are values or not. Now, since arg; (o) and
arg] (a;) are values, this concern is in fact cleared.

Next, to calculate the assume-expressions, we have to substi-
tute B ((a;);) for w{(®)3) in p and p’, and to do so we need to
show that B} ((a;);) is (observationally equivalent to) a value. For
this end, by Lemma 26-2, it is enough to show that, for any ¢ and j,
priperg((Oéj)j) is a value.

For each 1, in the case that pr;arg}(c;) = u or L, as seen
above, priperg((ozj)j) is a value. In the case that

pr;arg; (a;) = yi,

as above,
pr;pr; B} ((a;);) = pr,(97).

Here, gy itself is not a value, but can be replaced with a value x as
below by (RT); i.e.,

let x = gy in
1
let w'(®)7) = B ((a});) in

let w9 = B((ak);) in
assume (p[pr,(g7)]) ; assume (p') ;
let z = gy in

1
let w'(®)7) = B ((a});) in

let w@1) = Bg((af)j) in

assume (p[pr,(z)]) ; assume (p) ; x

Thus, we can substitute B ((c;);) for w!(®)i?,
On assume (p), it is obvious that the term

arg] (o) = arg)(a}) => pr;pr;Bj((c;);) = pr;pr; B((a))))
is observationally equivalent to true, from the calculation of
pr;pr; B! ((e;);) above. On assume (p'), similarly,

w = pl‘ipl‘ng((ay’)j)

is observationally equivalent to true. O

31

