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Abstract
Higher-order model checking (more precisely, the model check-
ing of higher-order recursion schemes) has been extensively stud-
ied recently, which can automatically decide properties of pro-
grams written in the simply-typed λ-calculus with recursion and
finite data domains. This paper formalizes predicate abstraction
and counterexample-guided abstraction refinement (CEGAR) for
higher-order model checking, enabling automatic verification of
programs that use infinite data domains such as integers. A proto-
type verifier for higher-order functional programs based on the for-
malization has been implemented and tested for several programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliability, Verification

Keywords Predicate Abstraction, CEGAR, Higher-Order Model
Checking, Dependent Types

1. Introduction
The model checking of higher-order recursion schemes (recur-
sion schemes, for short) has been extensively studied [19, 24, 28],
and recently applied to verification of functional programs [20,
22, 26]. Recursion schemes are grammars for describing infinite
trees [19, 28], and the recursion scheme model checking is con-
cerned about whether the tree generated by a recursion scheme
satisfies a given property. It can be considered an extension of fi-
nite state and pushdown model checking, where the model check-
ing of order-0 and order-1 recursion schemes respectively corre-
spond to finite state and pushdown model checking. From a pro-
gramming language point of view, a recursion scheme is a term
of the simply-typed, call-by-name λ-calculus with recursion and
tree constructors, which generates a single, possibly infinite tree.
Various verification problems for functional programs can be eas-
ily reduced to recursion scheme model checking problems [20, 22,
26]. Thanks to the decidability of recursion scheme model check-
ing [28], the reduction yields a sound, complete, and automatic
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verification method for programs written in the simply-typed λ-
calculus with recursion and finite data domains (such as booleans).

There is, however, still a large gap between the programs han-
dled by the above-mentioned method and real functional programs.
One of the main limitations is that infinite data domains such as
integers and lists cannot be handled by the recursion scheme model
checking. To overcome that limitation, this paper extends the tech-
niques of predicate abstraction [12] and counterexample-guided ab-
straction refinement (CEGAR) [4, 8] for higher-order model check-
ing (i.e., recursion scheme model checking).

The overall structure of our method is shown in Figure 1. Given
a higher-order functional program, predicate abstraction is first ap-
plied to obtain a higher-order boolean program (Step 1 in Figure 1).
For example, consider the following program M1:

let f x g = g(x+1) in let h y = assert(y>0) in
let k n = if n>0 then f n h else () in k(randi())

Here, assert takes a boolean as an argument and is reduced to
fail if the argument is false. The function randi returns a non-
deterministic integer value. Using a predicate λx.x > 0, we obtain
the following higher-order boolean program e1:

let f b g = if b then g(true) else g(randb()) in
let h c = assert(c) in
let k () = if randb() then f true h else () in k()

Here, randb returns a non-deterministic boolean value. Note that
the integer variables x and y have been replaced by the boolean
variable b and c respectively, which represents whether the values
of x and y are greater than 0. In the abstract version of f, b being
true means that x>0, which implies x+1>0, so that true is passed to
g in the then-part. In the else-part, x<=0, hence x+1>0 may or may
not hold, so that a non-deterministic boolean value is passed to g.
The higher-order boolean program thus obtained is an abstraction
of the source program; for any reduction sequence of the source
program, there is a corresponding reduction sequence of the higher-
order boolean program (but not vice versa). Thus, for example, if
the abstract program does not cause an assertion failure, neither
does the source program.

The higher-order boolean program is then represented as a re-
cursion scheme and model-checked by using an existing recursion
scheme model checker [21, 22] (Step 2 in Figure 1). If the higher-
order boolean program satisfies a given safety property,1 the source
program is also safe. Otherwise, an error path of the boolean pro-
gram is inspected (Step 3 in Figure 1). If it is also an error path
of the source program, then it is reported that the program is un-
safe. Otherwise, new predicates are extracted from the error path,
in order to refine predicate abstraction (Step 4 in Figure 1).

1 For the sake of simplicity, throughout the paper, we only consider the
reachability property.
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Figure 1. Higher-Order Model Checking with Predicate Abstrac-
tion and CEGAR

In the example above, we actually start predicate abstraction
with the empty set of predicates, and obtain the following abstract
program e0:

let f g = g() in let h () = assert(randb()) in
let k () = if randb() then f h else () in k()

The model checking of this program yields the following reduction
sequence, leading to an assertion failure:

k() −→ if randb() then f h else ()
−→ if true then f h else () −→ f h
−→ h() −→ assert (randb())
−→ assert (false) −→ fail · · · (1)

The corresponding reduction sequence in the source program M1

is:
k n −→ if n>0 then f n h else () −→n>0 f n h
−→ h(n+1) −→ assert (n+1>0) −→n+1<=0 fail · · · (2)

Here, n is some integer, and we have annotated the sequence with
the conditions that should hold at each step. As n>0 ∧ n+1<=0
is unsatisfiable, we know that the reduction sequence above is
actually infeasible, so that the source program may not cause an
assertion failure. From the unsatisfiable constraint above, we can
learn that information about whether an integer is positive is useful.
By using it, we get the refined abstract program shown earlier. As
the new abstract program is safe (i.e. does not cause an assertion
failure), we can conclude that the source program is also safe.

The idea sketched above is basically the same as the techniques
for predicate abstraction and CEGAR used already in finite state
and pushdown model checking [4, 8], except that models have been
replaced by higher-order boolean programs (or recursion schemes).
As discussed below, however, it turned out that there are many
challenging problems in developing effective methods for predicate
abstraction and CEGAR for higher-order model checking.

First, for predicate abstraction, it is unreasonable to use the
same set of predicates for all the integer variables. For example,
let us modify the program above into the following program M2:

let f x g = g(x+1) in let h y = assert(y>0) in
let k n = if n>=0 then f n h else () in k(randi())

Then, the predicate λν.ν ≥ 0 should be used for x, while λν.ν > 0
should be used for y. We should consistently use predicates; for ex-
ample, with the choice of the predicates above, g’s argument should

be abstracted by using λν.ν > 0, rather than λν.ν ≥ 0. We use
types (called abstraction types) to express which predicate should
be used for each variable. For example, for the above program, the
following abstraction types are assigned to f , h, and k:

f : int[λν.ν ≥ 0] → (int[λν.ν > 0] → �) → �
h : int[λν.ν > 0] → � k : int[ ] → �

The type of f means that the first argument of f should be an
integer abstracted by the predicate λν.ν ≥ 0, and the second
argument be a function that takes an integer abstracted by the
predicate λν.ν > 0 as an argument and returns a unit value.2

By using these abstraction types, the problem of checking that
predicates are consistently used boils down to a type checking
problem. For example, the standard rule for application:

Γ �M : τ1 → τ2 Γ � N : τ1
Γ �MN : τ2

ensures that N is abstracted using the predicates expected by the
function M ; there is no such case that an abstraction of function
M expects a value abstracted by using the predicate λν.ν > 0 but
the actual argument N is abstracted by using λν.ν ≥ 0.

A further twist is necessary to deal with multi-ary predicates.
For example, consider the following modified version M3:

let f x g = g(x+1) in let h z y = assert(y>z) in
let k n = if n>=0 then f n (h n) else () in

k(randi())

The variable y should now be abstracted by using λν.ν > z, which
depends on the value of z. Thus, the above program should be
abstracted by using the following dependent abstraction types:

f : (x : int[ ] → (w : int[λν.ν > x] → �) → �)
h : (z : int[ ] → y : int[λν.ν > z] → �) k : int[ ] → �

Here, please note that the types of the second arguments of f and
h refer to the values of the first arguments. Thus, our type system
for ensuring the consistency of predicates is actually a dependent
one. A predicate abstraction algorithm is then formalized as a type-
directed transformation relation Γ � M : τ ⇒ e based on the
dependent abstraction type system, where M is a source program
and e is an abstract program.3

The predicate abstraction mentioned above is sound in the sense
that if an abstract program is safe (i.e., does not reach fail), so
is the source program. Further, we can show that it is relatively
complete with respect to a dependent (refinement) intersection type
system [32]: If a source program is typable in the dependent inter-
section type system, our predicate abstraction can generate a safe
abstract boolean program by using certain abstraction types. This
means that, as long as suitable predicates are provided (by a user or
an automated method like the CEGAR discussed below), the com-
bination of our predicate abstraction and higher-order model check-
ing has at least the same verification power as (and actually strictly
more expressive than, as discussed later: see Remark 1 in Section 4)
the dependent intersection type system. Here, note that we need
only atomic predicates used in the dependent types; higher-order
model checking can look for arbitrary boolean combinations of the
atomic predicates as candidates of dependent types. Thus, this part
alone provides a good alternative to Liquid types [31], which also
asks users to provide templates of predicates, and infers dependent

2 Here, abstraction types should not be confused with refinement types [35];
the abstraction type of a term only tells how the term should be abstracted,
not what are possible values of the term. For example, integer 3 can have
type int[λν.ν < 0] (and it will be abstracted to the boolean value false).
3 To avoid the confusion, we call dependent abstraction types just abstrac-
tion types below. We use the term “dependent types” to refer to ordinary
dependent types used for expressing refinement of simple types.



types. Thanks to the power of higher-order model checking, how-
ever, our technique can infer dependent, intersection types unlike
Liquid types.

We now discuss the CEGAR part. Given an error path of an ab-
stract boolean program, we can find a corresponding (possibly in-
feasible) error path of the source program. Whether the error path
is feasible in the source program can be easily decided by sym-
bolically executing the source program along the error path, and
checking whether all the branching conditions in the path are satis-
fiable (recall the example given earlier). The main question is, if the
error path turns out to be infeasible, how to find a suitable refine-
ment of abstraction types, so that the new abstraction types yield
an abstract boolean program that does not contain the infeasible
error path. This has been well studied for first-order programs [2–
4, 8, 13–15], but it is not clear how to lift those techniques to deal
with higher-order programs.

Our approach to finding suitable abstraction types is as follows.
From a source program and its infeasible error path, we first con-
struct a straightline higher-order program (abbreviated to SHP)
that exactly corresponds to the infeasible path, and contains nei-
ther recursion nor conditional branches. In the case of the program
M3 above, this is easily obtained, as follows:

let f1 x g = g(x+1) in let h1 z y = assert(y>z) in
let k1 n = assume(n>=0); f1 n (h1 n) in k1(c)

Here, c is a constant, and assume(b) evaluates b, and proceeds
to the next instruction only if b is true. (But unlike assert, it is
not reduced to fail even if b is false.) For general programs that
contain recursions, the construction is more involved: see Section 5.

For SHP, a standard dependent (refinement) type system is
sound and complete, in the sense that a program does not reach
fail if and only if the program is typable in the type system.
Further, (a sub-procedure of) previous algorithms for inferring de-
pendent types based on interpolants [32, 33] is actually complete
(modulo the assumption that the underlying logic is decidable and
interpolants can always be computed) for SHP. Thus, we can auto-
matically infer the dependent type of each function in the straight-
line program. For example, for the program above, we obtain:

f1 : (x : int → (y : {ν : int | ν > x} → �) → �)
h1 : (z : int → y : {ν : int | ν > z} → �)
k1 : (z : int → �)

Here, the type of h1 means that given integers z and y such that
y > z, h1 z y returns a unit value without reaching fail. (These
dependent types should not be confused with abstraction types:
the latter only provides information about how the source program
should be abstracted.)

We then refine the abstraction type of each function in the
source program with predicates occurring in the dependent types
of the corresponding functions in the SHP. For example, given the
above dependent types, we get the following abstraction types:

f : (x : int[ ] → (y : int[λν.ν > x] → �) → �)
h : (z : int[ ] → y : int[λν.ν > z] → �) k : int[ ] → �

We can show that the abstraction types inferred in this manner are
precise enough, in that the abstract program obtained by using the
new abstraction types no longer has the infeasible error path. (Thus,
the so-called “progress” property is guaranteed as in CEGAR meth-
ods for finite-state or pushdown model checking.)

Based on the predicate abstraction and CEGAR techniques
mentioned above, we have implemented a prototype verifier for
(simply-typed) higher-order functional programs with recursion
and integer base types, and tested it for several programs.

Our contributions include: (i) the formalization of predicate
abstraction for higher-order programs, based on the novel notion
of abstraction types, (ii) the formalization of CEGAR for higher-

order programs, based on the novel notion of SHP and reduction of
the predicate discovery problem to dependent type inference, (iii)
theoretical properties like the relative completeness of our method
with respect to a dependent intersection type, the progress property,
etc., and (iv) the implementation and preliminary experiments.

The rest of this paper is structured as follows. Section 2 intro-
duces the source language, and Section 3 introduces a language of
higher-order boolean programs, and reviews the result on higher-
order model checking. Sections 4 and 5 respectively formalize
predicate abstraction and CEGAR for higher-order programs. Sec-
tion 6 reports our prototype implementation and preliminary exper-
iments. Section 7 discusses related work, and Section 8 concludes.
For the space restriction, proofs are omitted, which are available in
a full version [25].

2. Language
This section introduces a simply-typed, higher-order functional
language, which is used as the target of our verification method.

We assume a set B = {b1, . . . , bn} of data types, and a set
[[bi]] of constants, ranged over by c, for each data type bi. We also
assume that there are operators op : bi1 , . . . , bik → bj ; we write
[[op]] for the function denoted by op. We assume that the set of
data types includes � with [[�]] = 〈〉, and bool with [[bool]] =
{true, false}, and that the set of operators includes = : b, b →
bool for every b ∈ B, and boolean connectives such as ∧ :
bool, bool → bool.

The syntax of the language is given by:

D (program) ::= {f1 ex1 = e1, . . . , fm exm = em}
e (expressions) ::= c | x ev | f ev | let x = e1 in e2 | op(ev)

| fail | assume v; e | e1 ˜ e2
v (values) ::= c | x | f ev

Here, ex abbreviates a (possibly empty) sequence x1, . . . , xn. In
the definition f ex = e, we call the length of ex the arity of f . In
the definition of values, the length of ev in f ev must be smaller than
the arity of f . (In other words, f ev must be a partial application.)
We assume that every function in D has a non-zero arity, and that
D contains a distinguished function symbol main ∈ {f1, . . . , fm}
whose simple type is �→ �.

Most of the expressions are standard, except the following ones.
The expression fail aborts the program and reports a failure. The
expression assume v; e evaluates e if v is true; otherwise it stops
the program (without a failure). The expression e1 ˜ e2 evaluates
e1 or e2 in a non-deterministic manner. Note that a standard condi-
tional expression if v then e1 else e2 can be expressed as:

(assume v; e1) ˜ (let x = ¬v in assume x; e2).
We can express the assertion assert v as if v then 〈〉 else fail.
The random number generator randi used in Section 1 is defined
by:

randi 〈〉 = (randiFrom 1)˜(randiTo 0)
randiFromn = n˜(randiFrom (n+ 1))
randiTon = n˜(randiTo (n− 1))

We assume that a program is well-typed in the standard simple
type system, where the set of types is given by:

τ ::= b1 | · · · | bn | τ1 → τ2.

Furthermore, we assume that the body of each definition has a data
type bi, not a function type. This is not a limitation, as we can
always use the continuation-passing-style (CPS) transformation to
transform a higher-order program to an equivalent one that satisfies
the restriction.

We define the set of evaluation contexts by:E ::= [ ] | let x =
E in e. The reduction relation is given in Figure 2. We label the



f ex = e ∈ D

E[f ev] ε−→D E[[ev/ex]e] (E-APP)

E[let x = v in e]
ε−→D E[[v/x]e] (E-LET)

E[op(ec)] ε−→D E[[[op]](ec)] (E-OP)

E[e0 ˜ e1] i−→D E[ei] (E-PAR)

E[assume true; e]
ε−→D E[e] (E-ASSUME)

E[fail]
ε−→D fail (E-FAIL)

Figure 2. Call-by-Value Operational Semantics

reduction relation with 0, 1, ε to record which branch has been
chosen by a non-deterministic expression e1 ˜ e2; it will be used
to relate reductions of a source program and an abstract program

later in Sections 4 and 5. We write e1
l1···ln=⇒ D e2 if

e1(
ε−→D)∗

l1−→D (
ε−→D)∗ · · · ( ε−→D)∗

ln−→D (
ε−→D)∗e2.

We often omit the subscript D when it is clear from the context.
The goal of our verification method is to check whether
main 〈〉 s

=⇒D fail.4

3. Higher-Order Boolean Programs and Model
Checking

A source program is translated to a higher-order boolean program
(abbreviated to HBP) by the predicate abstraction discussed in
Section 4. The language of HBP is essentially the same as the
source language in the previous section, except:

• The set of data types consists only of types of the form
bool× · · · × bool| {z }

m

(which is identified with � when m = 0, and

bool when m = 1). We assume there are the following operators
to construct or deconstruct tuples:

〈·, . . . , ·〉 : bool, . . . , bool → bool× · · · × bool
�i : bool× · · · × bool → bool

• The set of expressions is extended with e1 ¨ e2 and un-
named functions λx.e. The former is used for expressing the non-
determinism introduced by abstractions; it is the same as e1 ˜ e2,
which is used to express the non-determinism present in a source
program, except that the reduction is labelled with ε. This distinc-
tion is convenient for the CEGAR procedure discussed in Section 5
to find a corresponding execution path of the source program from
an execution path of the abstract program. Unnamed functions are
used just for technical convenience for defining predicate abstrac-
tion; with λ-lifting, we can easily get rid of λ-abstractions. (The
evaluation rules and evaluation contexts are accordingly extended
with E[(λx.e)v] −→ E[[v/x]e] and E ::= · · · | E e | v E.)

The following theorem is the basis of our verification method.
It follows immediately from the decidability of the model checking
of higher-order recursion schemes [28].

Theorem 3.1. Let D be an HBP. The property ∃s.(main〈〉 s
=⇒D

fail) is decidable.

4 Thus, we consider the reachability problem for a closed program. Note,
however, that we can express unknown values by using non-determinism
(recall randi). It is also easy to extend our method to deal with more general
verification problems, such as resource usage verification [22].

A2S(Γ), x : b �ST ψi : bool for each i ∈ {1, . . . , n}
Γ �wf b[λx.ψ1, . . . , λx.ψn]

Γ �wf σ1 Γ, x : σ1 �wf σ2

Γ �wf x : σ1 → σ2 �wf ∅
�wf Γ Γ �wf σ

�wf Γ, x : σ

Figure 3. Well-formed types and type environments

We can use a recursion scheme model checker TRECS [21, 22]
to decide the above property.5 If ∃s.(main〈〉 s

=⇒D fail) holds,
the model checker generates an error path s. The knowledge about
recursion schemes is unnecessary for understanding the rest of this
paper, but an interested reader may wish to consult [20, 22, 28].

4. Predicate Abstraction
This section formalizes predicate abstraction for higher-order pro-
grams. As explained in Section 1, we use abstraction types to ex-
press which predicates should be used for abstracting each sub-
expression. The syntax of abstraction types is given by:

σ (abstraction types) ::= b1[ eP ] | · · · | bn[ eP ] | x : σ1 → σ2

P,Q (predicates) ::= λx.ψ

Γ (type environments) ::= ∅ | Γ, f : σ | Γ, x : σ

Here, the meta-variable ψ represents an expression of type bool
(which is called a formula) that is constructed only from variables
of base types, constants, and primitive operations; we do not allow
formulas that contain function applications, like y > f(x). The
base type bi[ eP ] describes values v of type bi that should be ab-
stracted to a tuple of booleans 〈P1(v), . . . , Pn(v)〉. For example,
the integer 3 with the abstraction type int[λν.ν > 0, λν.ν < 2]
is abstracted to 〈true, false〉. We often abbreviate b[ ] to b. The
dependent function type x :σ1 → σ2 describes functions that take a
value v of type σ1, and return a value of type [v/x]σ2. The scope of
x in the type x:σ1 → σ2 is σ2. When x does not occur in σ2, we of-
ten write σ1 → σ2 for x :σ1 → σ2. As mentioned already, abstrac-
tion types only describe how each expression should be abstracted,
not the actual value. For example, 3 can have type int[λν.ν < 0],
and λx.x can have type x : int[ ] → int[λν.ν = x + 1] (and
abstracted to λx : �.false).

We do not consider types whose predicates are ill-typed or
violate a variable’s scope, such as x :bool[ ] → int[λy.x+1 = y]
and x : int[λx.y > x] → y : int[ ] → bool[ ]. (The former uses a
boolean variable as an integer, and the latter refers to the variable y
outside its scope.) Figure 3 defines the well-formedness conditions
for types and type environments. In the figure, Δ �ST e : τ denotes
the type judgment of the standard simple type system. We write
A2S(σ) and A2S(Γ) respectively for the simple type and the simple
type environment obtained by removing predicates. For example,
A2S(f : (x : int[ ] → int[λy.y > x]), z : int[λz.z > 0]) =
f : int → int, z : int.

Figure 4 defines the predicate abstraction relation Γ � e1 :
σ  e2, which reads that an expression e1 (of the source lan-
guage in Section 2) can be abstracted to an expression e2 (of
the HBP language given in Section 3) by using the abstraction
type σ, under the assumption that each free variable x of e1 has
been abstracted using the abstraction type Γ(x). In the rules, it
is implicitly assumed that all the type environments and types
are well-formed. We do not distinguish between function vari-

5 The gap between the operational semantics of our language and that of
recursion schemes can be filled by the CPS transformation. Note also that
finite state or pushdown model checkers cannot be used, as higher-order
programs are in general strictly more expressive [10].



e is a constant, a variable or an expression of the form op(ev)
A2S(Γ) �ST e : b

Γ � e : b[λν.ν = e] true
(A-BASE)

Γ � e : b[ eQ] e′

β(Γ, x : b[ eQ]) �ST ψ : bool β(Γ, x : b[ eQ]) �ST ψ
′ : bool

|= P (x) ⇒ θΓ,x:b[ eQ](ψ) |= ¬P (x) ⇒ θΓ,x:b[ eQ](ψ
′)

e′′ = (assume ψ; true) ¨ (assume ψ′; false)

Γ � e : b[ eQ,P ] let x = e′ in 〈x, e′′〉
(A-CADD)

Γ � e : b[ eQ, eP ] e′

Γ � e : b[ eP ] let 〈ex, ey〉 = e′ in 〈ey〉 (A-CREM)

Γ(x) = (y1 : σ1 → · · · → yk : σk → σ)
Γ, y1 : σ1, . . . , yi−1 : σi−1 � vi : [v1/y1, . . . , vi−1/yi−1]σi  ei

(for each i ∈ {1, . . . , k})

Γ � x ev : [ev/ey]σ  let y1 = e1 in · · ·
let yk = ek in x ey

(A-APP)

Γ � e1 : σ′  e′1 Γ, x : σ′ � e2 : σ  e′2
Γ � let x = e1 in e2 : σ  let x = e′1 in e

′
2

(A-LET)

β(Γ) �ST ψ : bool |= θΓ(ψ)

Γ � fail : σ  assume ψ; fail
(A-FAIL)

Γ � v : bool[λx.x] e1
Γ, x : bool[λx.v] � e : σ  e2

Γ � assume v; e : σ  let x = e1 in assume x; e2
(A-ASM)

Γ � e1 : σ  e′1 Γ � e2 : σ  e′2
Γ � e1 ˜ e2 : σ  e′1 ˜ e′2

(A-PAR)

Γ � e : (x : σ′
1 → σ′

2) e′ Γ, x : σ1 � x : σ′
1  e′1

Γ, x : σ1, x
′ : σ′

1, y : σ′
2 � y : σ2  e′2

Γ � e : (x : σ1 → σ2) 
let f = e′ in
λx.let x′ = e′1 in

let y = f x′ in e′2
(A-CFUN)

fi : (exi : eσi → σi) ∈ Γ Γ, exi : eσi � ei : σi  e′i
(for each i ∈ {1, . . . ,m}) Γ(main) = �[ ] → �[ ]

� {f1 ex1 = e1, . . . , fm exm = em} : Γ 
{f1 ex1 = e′1, . . . , fm exm = e′m}

(A-PROG)

Figure 4. Predicate Abstraction Rules

ables and other variables (hence, A-APP applies also to a func-
tion variable f ). In A-CADD, assume e1; e2 is a syntax sugar for
let x1 = e1 in assume x1; e2.

In A-CADD and A-FAIL, β(σ) (β(Γ), resp.) represent the sim-
ple type (simple type environment, resp.) obtained by replacing
each occurrence of a base abstraction type b[P1, . . . , Pm] with
bool× · · · × bool| {z }

m

. Intuitively, β(Γ) represents the type environ-

ment for the output program of the transformation.
We explain the main rules. Base values are abstracted by using

three rules A-BASE, A-CADD, and A-CREM. Before explaining
those rules, let us discuss the following simplified version, special-
ized for a single predicate:

|= P (e) ⇒ θΓ(ψ) |= ¬P (e) ⇒ θΓ(ψ′)
Γ � e : b[P ] (assume ψ; true) ¨ (assume ψ′; false)

(A-BSIMP)

Here, we assume that e is a constant, a variable, or an expression of
the form op(ev) and has a base type b. ψ and ψ′ are boolean formu-
las that may contain variables in Γ. As e may contain variables, we
need to take into account information about the values of the vari-
ables, which is obtained by using the substitution θΓ, defined as:
{x �→ 〈P1(x), . . . , Pm(x)〉 | Γ(x) = b[P1, . . . , Pm]}. For exam-
ple, let Γ be x : int[λx.x > 0, λx.x < 0] and ψ be �1(x) ∧ �2(x).
Then, θΓ(ψ) = x > 0 ∧ x < 0. As in this example, the substi-
tution θΓ maps a boolean expression of an abstract program to the
corresponding condition in the source program. In rule A-BSIMP
above, |= P (e) ⇒ θΓ(ψ) means that P (e) is true only if θΓ(ψ)
is true, i.e. the value of ψ in the abstract program is true. Thus, the
abstract value of e may be true only if the value of ψ is true,
hence the part assume ψ; true in the abstract program. Similarly,
the abstract value of emay be false only if the value ofψ′ is true,
hence the part assume ψ′; false.

For example, let e ≡ x+ 1, P ≡ λx ≥ 0, and Γ ≡ x : int[P ].
Then, |= P (x+ 1) ⇒ true and |= ¬P (x+ 1) ⇒ ¬P (x), so that
e is abstracted to (assume true; true) ¨ (assume ¬x; false).
Note that θΓ(¬x) = [P (x)/x]¬x = ¬P (x).

We need to generalize the above rule to the case for multiple
predicates. The following is a naive rule.

Γ � e : b[Pi] ei

Γ � e : b[P1, . . . , Pn] 〈e1, . . . , en〉 (A-BCARTESIAN)

This produces a well-known cartesian abstraction, which is often
too imprecise. The problem is that each boolean value of the ab-
straction is computed separately, ignoring the correlation. For ex-
ample, let P1 ≡ λx.x > 0 and P2 ≡ λx.x ≤ 0 with n = 2.
Then, a possible abstraction of an unknown integer should be
〈true, false〉 and 〈false, true〉, but the above rule would gen-
erate 〈(true ¨ false), (true ¨ false)〉, which also contains
〈true, true〉 and 〈false, false〉.

The discussion above motivated us to introduce the three rules
A-BASE, A-CADD, and A-CREM. In order to abstract an expres-
sion e with b[P1, . . . , Pn], we first use A-BASE to abstract e to
true by using the abstraction type b[λν.ν = e]; this is necessary
to keep the exact information about e during the computation of ab-
stractions. A-CADD is then used to add predicates P1, . . . , Pn one
by one, taking into account the correlation between the predicates.
Note that in A-CADD, the result of abstraction by the other pred-
icates is taken into account by the substitution θΓ,x:b[ eQ]. Finally,
A-CREM is used to remove the unnecessary predicate λν.ν = e.
See Example 4.1 for an application of these rules.

Note that rule A-CADD is non-deterministic in the choice of
conditions ψ and ψ′, so that how to compute the conditions is left
unspecified. We have intentionally made so, because depending on
base data types, the most precise conditions (the strongest condi-
tions entailed by P (x) and ¬P (x)) may not be computable or are
too expensive to compute. For linear arithmetics, however, we can
use off-the-shelf automated theorem provers to obtain such condi-
tions.

In rule A-APP, each argument vi is abstracted by using the
abstraction type σi with y1, . . . , yi−1 being replaced by the actual
arguments. Note that this rule applies also to the case where the
sequence ev is empty (i.e. k = 0). Thus, we can derive Γ � y : σ  
y if Γ(y) = σ. Note also that the boolean expression ei in A-APP
can depend on y1, . . . , yi−1.

In A-FAIL, the assume statement is inserted for filtering out
an invalid combination of abstract values. For example, let Γ be



x : int[λx.x > 0, λx.x < 0]. Then, assume (�1(x) ∧ �2(x)); is
inserted since x > 0 and x < 0 cannot be true simultaneously. In
A-ASM, we can use the fact that v is true in e for abstracting e.

Rule A-CFUN is used for changing the abstraction type of a
function from x : σ1 → σ2 to x : σ′

1 → σ′
2, which is analogous

to the usual rule for subtyping-based coercion. If a function f is
used in different contexts which require different abstraction types
of f , A-CFUN can be used to adjust the abstraction type of f to
that required for each context.

We can read the predicate abstraction rules for Γ � e : σ  
e′ as an algorithm that takes Γ, e and σ as input, and outputs
e′ as an abstraction of e, by (1) restricting applications of the
rules for coercion (of names A-CXYZ) to the actual arguments
of function applications, and (2) fixing an algorithm to find the
boolean formulas ψ and ψ′ in A-CADD. (Note that in A-LET, the
type σ′ can be obtained from Γ and e1.) The rule for � D : Γ D′

can then be interpreted as an algorithm that takesD and Γ as input,
and outputs an HBP D′ as an abstraction of D.

Example 4.1. Recall the program M2 in Section 1. Let Γ be:

x : int[λν.ν ≥ 0], g : int[λν.ν > 0] → �

The body of f is transformed as follows. x+ 1 is transformed by:

Γ � x+ 1 : int[λν.ν = x+ 1] true
A-BASE

Γ � x+ 1 : int[λν.ν = x+ 1, λν.ν > 0] e1
A-CADD

Γ � x+ 1 : int[λν.ν > 0] e2
A-CREM

Here, e1 ≡ let y1 = true in 〈y1, e3〉 and e2 ≡ let 〈y1, y2〉 =
e1 in y2, with e3 ≡ (assume true; true) ¨ (assume ¬(x ∧
y1); false). Here, we used true and ¬(x∧y1) asψ andψ′ respec-
tively, in A-CADD. (Note that P (y1) ⇒ θΓ,y1:int[λν.ν=x+1](ψ1),
i.e., y1 ≤ 0 ⇒ ¬(x ≥ 0 ∧ y1 = x + 1) holds.) By simplify-
ing e2, we get if x then true else true¨false. Thus, the body
g(x+ 1) of function f is transformed by using A-APP as follows:

Γ(g) = int[λν.ν > 0] → �

...
Γ � x+ 1 : int[λν.ν > 0] e2

Γ � g(x+ 1) : � let y = if x then true
else (true¨false) in g(y)

Our predicate abstraction rules are applicable to programs that
use infinite data domain other than integers. See [25] for an exam-
ple of abstracting a list-processing program.

We discuss properties of the predicate abstraction relation be-
low. First, we show that if abstraction types are consistent, there is
always a valid transformation. We write Γ �AT e : σ for the type
judgment relation obtained from the predicate abstraction rules by
removing all the conditions on outputs: see [25].

Theorem 4.1. Suppose Γ �AT e : σ. Then, A2S(Γ) �ST e : A2S(σ).
Furthermore, there exists e′ such that Γ � e : σ  e′.

Proof. Straightforward induction on the derivation of Γ �AT e : σ.
Note that in the rule for A-CADD, we can choose true as ψ and
ψ′.

The following lemma guarantees that the output of the transfor-
mation is well-typed.

Lemma 4.2. If Γ � e1 : σ  e2, then β(Γ) �ST e2 : β(σ).

Proof. Straightforward induction on the derivation of Γ � e1 :
σ  e2.

The theorem below states that our predicate abstraction is sound
in the sense that if a source program fails, so does its abstraction

(see [25] for the proof). Thus, the safety of the abstract program
(which is decidable by Theorem 3.1) is a sufficient condition for
the safety of the source program.

Theorem 4.3 (soundness). If � D1 : Γ D2 and main〈〉 s
=⇒D1

fail, then main〈〉 s
=⇒D2 fail.

The theorem above says that the abstraction is sound but not
how good the abstraction is. We compare below the verification
power of the combination of predicate abstraction and higher-order
model checking with the dependent intersection type system given
in [25], which is essentially equivalent to the one in [32].

We write B[ψ1, . . . , ψk] for the set of formulas constructed
from ψ1, . . . , ψk and boolean operators (true, false,∧,∨,¬).
For an abstraction type σ, the set DepTy(σ) of dependent types is:

DepTy(b[P1, . . . , Pn]) = {{ν : b | ψ} | ψ ∈ B[P1(ν), . . . , Pn(ν)]}
DepTy(x : σ1 → σ2) = {(x : δ11 → δ21) ∧ · · · ∧ (x : δ1m → δ2m)

| δ11, . . . , δ1m ∈ DepTy(σ1), δ21, . . . , δ2m ∈ DepTy(σ2)}
We extend DepTy to a map from abstraction type environments to
the powerset of dependent type environments by:

DepTy({x1 : σ1, . . . , xn : σn}) =
{{x1 : δ1, . . . , xn : δn} | δi ∈ DepTy(σi) for each i ∈ {1, . . . , n}}

The following theorem says that our predicate abstraction (with
higher-order model checking) has at least the same verification
power as the dependent intersection type system.

Theorem 4.4 (relative completeness). Suppose �DIT D : Δ. If
Δ ∈ DepTy(Γ), then there exists D′ such that � D : Γ D′ and
main〈〉 �=⇒D′ fail.

Remark 1. The converse of the above theorem does not hold: see
[25]. Together with Theorem 4.4, this implies that our combination
of predicate abstraction and higher-order model checking is strictly
more powerful than the dependent intersection type system.
Remark 2. The well-formedness condition for abstraction types
is sometimes too restrictive to express a necessary predicate. For
example, consider the following program.

let apply f x = f x in let g y z = assert(y=z) in
let k n = apply (g n) n; k(n+1) in k(0)

In order to verify that the assertion failure does not occur, we need
a correlation between the argument of f and x, which cannot be
expressed by abstraction types. The problem can be avoided either
by adding a dummy parameter to apply (as let apply n f x
= ...) and using the abstraction type n : int[ ] → (int[λν.ν =
n] → �) → int[λν.ν = n] → �, or by swapping the parameters
f and x. A more fundamental solution (which is left for future
work) would be to introduce polymorphic abstraction types, like
∀m : int.(int[λν.ν = m] → �) → int[λν.ν = m] → �, and
extend the predicate abstraction rules accordingly.

5. Counterexample-Guided Abstraction
Refinement (CEGAR)

This section describes a CEGAR procedure to discover new pred-
icates used for predicate abstraction when the higher-order model
checker TRECS has reported an error path s of a boolean program.

5.1 Feasibility checking

Given an error path s of an abstract program, we first check whether
s is feasible in the source program D, i.e. whether main〈〉 s

=⇒D

fail. This can be easily checked by actually executing the source
program along the path s, and checking whether all the branching
conditions are true. (Here, we assume that the program is closed.
If we allow free variables for storing base values, we can just



symbolically execute the source program along the path, and check
whether all the conditions are satisfiable.) If the source program
indeed has the error path (i.e. main〈〉 s

=⇒D fail), then we report
the error path as a counterexample.

5.2 Predicate discovery and refinement of abstraction types

If the error path is infeasible (i.e. main〈〉 � s
=⇒D fail), we find new

predicates to refine predicate abstractions.
In the case of the model checking of first-order programs, this

is usually performed by, for each program point  in the error
path, (i) computing the strongest condition C1 at , (ii) computing
the weakest condition C2 for reaching from  to the failure node,
and (iii) using a theorem prover to find a condition C such that
C1 ⇒ C and C ⇒ ¬C2. Then the predicates in C can be used
for abstracting the state at the program point. For example, in the
reduction sequence (2) ofM1 in Section 1, the condition C1 on the
local variable x is n>0∧x=n, and the conditionC2 is x+1 ≥ 0.
From them, we obtain C ≡ x > 0 as a predicate for abstracting x.

It is unclear, however, how to extend it to deal with higher-
order functions. For example, in the example above, how can we
find a suitable abstraction type for functions f and g? To address
this issue, as mentioned in Section 1, we use the following type-
based approach. From an infeasible error path, we first construct
a straightline higher-order program (abbreviated to SHP, which
is straightline in the sense that it contains neither branches nor
recursion and that each function is called at most once) that has
exactly one execution path, corresponding to the path s of the
source program. We then infer the dependent types of functions
in the straightline program, and use the predicates occurring in
the dependent types for refining abstraction types of the source
program. We describe each step in more detail below.

5.2.1 Constructing SHP

Given a source program and a path s, the corresponding SHP is
obtained by (i) making a copy of each function for each call in the
execution path, and (ii) for each copy, removing the branches not
taken in s.

Example 5.1. Recall the program M3 in Section 1.

main〈〉 = k m f x g = g(x+ 1)
h z y = (assume y > z; 〈〉) ˜ (assume ¬(y > z); fail)
k n = (assume n ≥ 0; f n (h n))˜(assume ¬(n ≥ 0); 〈〉)

Here, we have represented conditionals and assert expressions in
our language.6 Given the spurious error path 0 · 1, we obtain the
following SHP.

main〈〉 = k m h z y = assume ¬(y > z); fail
f x g = g(x+ 1) k n = assume n ≥ 0; f n (h n)

It has been obtained by removing irrelevant non-deterministic
branches in h and k.

The construction of an SHP generally requires duplication of
function definitions and function parameters. For example, con-
sider the following program:

main〈〉 = k m twice f x = f(f x)
g x = if x ≤ 0 then 1 else 2 + g(x− 1)
k n = let x = twice g n in assert (x > 0)

(wherem is some integer constant). The program calls the function
g twice, and asserts that the result x is positive. Suppose that an
infeasible path 0101 has been given, which represents the following

6 Here, for the sake of simplicity, we assume that m is some integer con-
stant. As already mentioned, the random number generator randi can actu-
ally be encoded in our language.

(infeasible) execution path:

main〈〉 −→ k m =⇒ let x = g(g m) in · · ·
0

=⇒ let x = g(1) in · · ·
1

=⇒ let x = 2 + g(0) in · · ·
0

=⇒ let x = 2 + 1 in · · · =⇒ assert 3 > 0
1

=⇒ fail

The path is infeasible because the final transition is invalid.
From the source program and the path above, we construct the

following straightline program:7

main〈〉 = k m twice 〈f (1), f (2)〉 x = f (2)(f (1) x)

g(1) x = assume x ≤ 0; 1 g(3) x = assume x ≤ 0; 1

g(2) x = assume ¬(x ≤ 0); 2 + g(3)(x− 1)

k n = let x = twice 〈g(1), g(2)〉n in assume ¬(x > 0); fail

As g is called three times, we have prepared three copies g(1),
g(2), g(3) of g, and eliminated unused non-deterministic branches.
Note that the function parameter f of twice has been replaced by a
function pair 〈f (1), f (2)〉 accordingly.

The general construction is given below. Consider a program
normalized to the following form:

D ::= {f1 ex1 = e10˜e11, . . . , fm exm = em0˜em1}
e ::= assume v; a | let x = op(ev) in a
a ::= 〈〉 | x ev | f ev | fail
v ::= c | x ev | f ev

Here, for the sake of simplicity, we have assumed that every func-
tion definition has at most one (tail) function call, and the re-
turn value is 〈〉; this does not lose generality as the normal form
can be obtained by applying CPS transformation and λ-lifting.
Given a path s = b1 · · · b� of D (which means that the branch
bi has been chosen at ith function call), the corresponding SHP
D′ = SHP(D, s) is given by:

D′ = {f (j)
i exi = [eibj ]j+1 | i ∈ {1, . . . ,m}, j ∈ {1, . . . , },

the target of the jth function call is fi}
∪{f (j)

i exi = 〈〉 | i ∈ {1, . . . ,m}, j ∈ {1, . . . , },
the target of the jth function call is not fi}

∪{main〈〉 = main(1)〈〉}
Here, [e]j is given by:

[assume v; a]j = assume v; [a]j
[let x = op(ev) in a]j = let x = op(ev) in [a]j
[〈〉]j = 〈〉 [fail]j = fail [x]j = x

[x v1 · · · vk]j = �j(x) v1
�j+1 · · · vk

�j+1 (k ≥ 1)

[f v1 · · · vk]j = f (j) v1
�j+1 · · · vk

�j+1

c�j = c x�j = x (if x is a base variable)
(x ev)�j = 〈λey.〈〉, . . . , λey.〈〉| {z }

j−1

, �j(x)(ev�j ), . . . , ��(x)(ev�j )〉

(if x is a function variable)
(f ev)�j = 〈λey.〈〉, . . . , λey.〈〉| {z }

j−1

, f (j)(ev�j ), . . . , f (�)(ev�j )〉

Here, each function parameter has been replaced by a -tuple of
functions.

The SHP SHP(D, s), constructed from a source program
D and a spurious error path s, contains neither recursion nor
non-deterministic branch, and is reduced to fail if and only if
main〈〉 s

=⇒D fail. Furthermore, each function in the SHP is
called at most once.

7 For clarity, we have extended our language with tuples of functions. If
necessary, they can be removed by the currying transformation.



The generated straightline program satisfies the following prop-
erties.

Lemma 5.1. Suppose D′ = SHP(D, s). Then:

1. D′ contains neither recursions nor non-deterministic branches
e1˜e2.

2. main〈〉 s
=⇒D fail if and only if main〈〉 =⇒D′ fail.

3. Each function f (j)
i in D′ is called at most once.

5.2.2 Typing SHP

The next step is to infer dependent types for functions in SHP.
Thanks to the properties that SHP contains neither recursion nor
non-deterministic branch and that every function is linear, the stan-
dard dependent type system is sound and complete for the safety
of the program. Let us write �DT D if D is typable in the frag-
ment of the dependent type system presented in Section 4 without
intersection types (but extended with (non-dependent) tuple types).

Lemma 5.2. Let D′ = SHP(D, s). Then, �DT D
′ : Δ for some Δ

if and only if main〈〉 �=⇒D′ fail.

Proof sketch The “only if” part follows immediately from the
soundness of the dependent type system. For the “if” part, it suffices
to observe that, as every function in D′ is linear, each variable x of
base type can be assigned a type {ν : b | ν = v}, where v is the
value that x is bound to. ˜

We can use existing algorithms [32, 33] to infer dependent
types: we first prepare a template of a dependent type for each
function, generate constraints on predicate variables, and solve the
constraints. We give below an overview of the dependent type
inference procedure through an example; an interested reader may
wish to consult [32, 33].

Example 5.2. Recall the straightline program in Example 5.1. We
prepare the following templates of the types of functions f , h, k:

f : (x : {ν : int | P1(ν)} → (y : {ν : int | P2(ν, x)} → �) → �)
h : (z : {ν : int | P3(ν)} → y : {ν : int | P4(ν, z)} → �)
k : (x : {ν : int | P0(ν)} → �)

From the program, we obtain the following constraints onP0, . . . , P4:

P0(m) ∀x.(P1(x) ⇒ P2(x+ 1, x))
∀z, y.(P3(z) ∧ P4(y, z) ⇒ y > z)
∀n, y.P0(n) ⇒

(n ≥ 0 ⇒ (P1(n) ∧ P3(n) ∧ (P2(y, n) ⇒ P4(y, n))))

Each constraint has been obtained from the definitions of main,f, g,
and k. They can be normalized to:

∀ν.(ν = m⇒ P0(ν))
∀n, ν.(P0(n) ∧ n ≥ 0 ∧ ν = n⇒ P1(ν))
∀x, ν.(P1(x) ∧ ν = x+ 1 ⇒ P2(ν, x))
∀n, ν.(P0(n) ∧ n ≥ 0 ∧ ν = n⇒ P3(ν))
∀n, z, ν.(P0(n) ∧ n ≥ 0 ∧ z = n ∧ P2(ν, n) ⇒ P4(ν, z))
∀z, y.(P3(z) ∧ P4(y, z) ⇒ y > z)

These constraints are “acyclic” in the sense that for each constraint
of the form Ci ⇒ Pi(ex), Ci contains only (positive) occurrences
of predicates Pj’s such that j < i occur. Such constraints can be
solved by using a sub-procedure of existing methods for dependent
type inference based on interpolants [32, 33], and the following
predicates can be obtained. (The inferred predicates depend on the
underlying interpolating theorem prover.)

P0(ν) ≡ P1(ν) ≡ P3(ν) ≡ true
P2(ν, x) ≡ P4(ν, x) ≡ ν > x

Thus, we obtain the following types for f and h:

f : (x : {ν : int | true} → (y : {ν : int | ν > x} → �) → �)
h : (z : {ν : int | true} → y : {ν : int | ν > z} → �)

5.2.3 Refining abstraction types

The final step is to refine the abstraction types of the source pro-
gram, based on the dependent types inferred for the straightline
program. Let δf,j be the inferred dependent type of f (j). Then,
we can obtain an abstraction type σf,j such that undup(δf,j) ∈
DepTy(σf,j) (the choice of such σf,j depends on what predicates
are considered atomic), where undup(δ) is defined by:

undup({ν : b | ψ}) = {ν : b | ψ}
undup(x : δ1 → δ2) = x : undup(δ1) → undup(δ2)

undup(δ1 × · · · × δn) =
^

i∈{1,...,n}
undup(δi)

The new abstraction type σ′
f of f is given by:

σ′
f = σf � σf,1 � · · · � σf,�,

where σf is the previous abstraction type of f and σ1 � σ2 is
obtained by just merging the corresponding predicates:

b[ eP ] � b[ eQ] = b[ eP , eQ]
(x : σ1 → σ2) � (x : σ′

1 → σ′
2) = x : (σ1 � σ′

1) → (σ2 � σ′
2)

We write Refine(Γ,Δ) for the refined abstraction type environ-
ment f1 : σ′

f1 , . . . , fn : σ′
fn

. (There is a non-determinism coming
from the choice of σf,j , but that does not matter below.)

Example 5.3. Recall Example 5.3. From the dependent types of f
and g, we obtain the following abstraction types:

f : (x : int[ ] → (y : int[λν.ν > x] → �) → �)
h : (z : int[ ] → y : int[λν.ν > z] → �)

Suppose that the previous abstraction types were

f : (x : int[ ] → (y : int[ ] → �) → �)
h : (z : int[λν.ν = 0] → y : int[λν.ν > 0] → �)

Then, the refined abstraction types are:

f : (x : int[ ] → (y : int[λν.ν > x] → �) → �)
h : (z : int[λν.ν = 0] → y : int[λν.ν > 0, λν.ν > z] → �)

5.3 Properties of the CEGAR algorithm

We now discuss properties of the overall CEGAR algorithm. If the
refined abstraction type is obtained from an infeasible error path
s, the new abstract boolean program no longer has the path s.
This is the so called “progress property” known in the literature
on CEGAR for the usual (i.e. finite state or pushdown) model
checking. Formally, we can prove the following property (see [25]
for the proof):

Theorem 5.3 (progress). Let D1 be a well-typed program and s
be an infeasible path of D1. Suppose D2 = SHP(D1, s) and
�DIT D2 : Δ with Γ = Refine(Γ′,Δ) for some Γ′. Then, there
exists D3 such that � D1 : Γ D3, and main〈〉 � s

=⇒D3 fail.

The progress property above does not guarantee that the verifi-
cation will eventually terminate: There is a case where the entire
CEGAR loop does not terminate, finding new spurious error paths
forever (see Section 6). Indeed, we cannot expect to obtain a sound
and complete verification algorithm, as the reachability is undecid-
able in general even if programs are restricted to those using only
linear arithmetics.

We can however modify our algorithm so that it is relatively
complete with respect to the dependent intersection type system, in
the sense that all the programs typable in the dependent intersection
type system can be verified by our method. Let genP be a total map
from the set of integers to the set of predicates. (Such a total map
exists, as the set of predicates is recursively enumerable.) Upon
the i-th iteration of the CEGAR loop, add the predicate genP(i)



to each position of abstraction type, in addition to the predicates
inferred from counterexamples. Then, if a program is well-typed
under Δ in the dependent intersection type system, an abstraction
type environment Γ such that Δ ∈ DepTy(Γ) is eventually found,
so that by Theorem 4.4, our verification succeeds. Of course, this
is impractical, but we may be able to adapt the technique of [18] to
get a practical algorithm.

6. Implementation and Preliminary Experiments
Based on our method described so far, we have implemented a
prototype verifier for a tiny subset of Objective Caml, having
only booleans and integers as base types. Instead of the non-
deterministic choice (e1˜e2), the system allows conditionals and
free variables (representing unknown integers). Our verifier uses
TRECS [21, 22] as the underlying higher-order model checker
(for Step 2 in Figure 1), and uses CSIsat [6] for computing in-
terpolants to solve constraints (for Step 4). CVC3 [5] is used for
feasibility checking (for Step 3) and computing abstract transi-
tions (i.e., to compute formulas ψ and ψ′ in rule A-CADD of
Figure 4 for Step 1). As computing the precise abstract transi-
tions (i.e. the strongest formulas ψ and ψ′ in rule A-CADD)
is expensive, we have adapted several optimizations described
in Section 5.2 of [2] such as bounding the maximum number
of predicates taken into account for computing abstraction with
a sacrifice of the precision. The implementation can be tested
at http://www.kb.ecei.tohoku.ac.jp/∼ryosuke/cegar/.
The full version [25] contains more details about the experiments.

The results of preliminary experiments are shown in Table 1.
The column “S” shows the size of programs, measured in word
counts. The column “O” shows the largest order of functions in the
program (an order-1 function takes only base values as arguments,
while an order-2 function takes order-1 functions as arguments).8

The column “C” shows the number of CEGAR cycles. The remain-
ing columns show running times, measured in seconds. The column
“abst” shows the time spent for computing abstract programs (from
given programs and abstraction types). The column “mc” shows
the time spent (by TRECS) for higher-order model checking. The
column “cegar” shows the time spent for finding new predicates
(Step 4 in Figure 1). The column “total” shows the total running
time (machine spec.: 3GHz CPU with 8GB memory).

The programs used in the experiment are as follows. Free vari-
ables denote unknown integers.

• intro1, intro2, and intro3 are the three examples in Sec-
tion 1.

• sum and mult compute 1 + · · · + n and n+ · · · + n| {z }
n

respec-

tively, and asserts that the result is greater than or equal to n. Here
is the code of sum.
let rec sum n =
if n <= 0 then 0 else n + sum (n - 1)

in assert (n <= sum n)
• max defines a higher-order function that takes a function that

computes the maximum of two integers, and three integers as input,
and returns the maximum of the three integers:
let max max2 x y z = max2 (max2 x y) z in
let f x y = if x >= y then x else y in
let m = max f x y z in assert (f x m = m)

The last line asserts that the return value of max is greater than or
equal to x (with respect to the function f ).

• mc91 is McCarthy 91 function.
let rec mc91 x =

8 Because of the restriction of the model checker TRECS, all the source
programs are actually verified after the CPS transformation. Thus, all the
tested programs are actually higher-order, taking continuation functions.

if x > 100 then x - 10 else mc91(mc91(x + 11))
in if n <= 101 then assert (mc91 n = 91)

The last line asserts that the result is 91 if the argument is less than
or equal to 101.

• ack defines Ackermann function ack and asserts ack(n) ≥ n.
• repeat defines a higher-order function that takes a function

f and integers n, s, then returns fn(s).
let rec repeat f n s =
if n = 0 then s else f (repeat f (n - 1) s) in

let succ x = x + 1 in
assert (repeat succ n 0 = n)

• fhnhn is a program not typable in the dependent intersection
type system but verifiable in our method (c.f. Remark 1):
let f x y = assert (not (x() > 0 && y() < 0)) in
let h x y = x in let g n = f (h n) (h n) in g m
• hrec is a program that creates infinitely many function clo-

sures:
let rec f g x =
if x >= 0 then g x else f (f g) (g x) in

let succ x = x + 1 in assert(f succ n >= 0)
• neg is an example that needs nested intersection types:
let g x y = x in
let twice f x y = f (f x) y in
let neg x y = -x() in
if n >= 0 then assert(twice neg (g n) () >= 0)
else ()

• apply is the program discussed in Remark 2.
• a-prod, a-cppr, and a-init are programs manipulating

arrays. A (functional) array has been encoded as a pair of the size
and a function from indices to array contents. For example, the
functions for creating and updating arrays are defined as follows.
let mk_array n i = assert(0<=i && i<n); 0
let update i n a x =
a(i); let a’ j = if i=j then x else a(i) in a’

For a-prod and a-cppr, it has been verified that there is no array
boundary error. Program a-init initializes an array, and asserts the
correctness of initialization. and a-max creates an array of size n
whose i-th element is n−i, computes the maximum elementm, and
asserts that m ≥ n. These examples show an advantage of higher-
order model checking; various data structures can be encoded as
higher-order functions, and their properties can be verified in a
uniform manner.

• l-zipunzip and l-zipmap are taken from list-processing
programs. We have manually abstracted lists to integers (represent-
ing the list length), and then verified the size properties of list func-
tions. For example, the code for l-zipunizp is:
let f g x y = g (x+1) (y+1) in
let rec unzip x k =
if x=0 then k 0 0 else unzip (x-1) (f k) in

let rec zip x y =
if x=0 then if y=0 then 0 else fail()
else if y=0 then fail() else 1+zip(x-1)(y-1)

in unzip n zip
• hors encodes a model checking problem for higher-order

recursion schemes extended with integers (which cannot be handled
by recursion scheme model checkers).

• e-simpl and e-fact model programs that use exceptions,
where an exception handler is expressed as a continuation, and as-
sert that there are no uncaught exceptions. The idea of the encod-
ing of exceptions is similar to [20], but unlike [20], exceptions can
carry integer values.

• r-lock and r-file model programs that use locks and files,
and assert that they are accessed in a correct manner. The encoding
is similar to [22], but (unlike [22]) the programs’ control behaviors
depend on integer values.



• A program of name “xxx-e” is a buggy version of the program
“xxx”.

The above programs have been verified (or rejected, for wrong
programs) correctly, except apply. As discussed in Remark 2,
apply cannot be verified because of the fundamental limitation
of abstraction types. Our system continues to infer new (but too
specific) abstraction types (int[λν.ν = i] → �) → int[λν.ν =
i] → � for i = 0, 1, 2, . . . forever and (necessarily) does not
terminate. The program can however be verified if the arguments
of apply are swapped. The same problem has been observed for
variations of some of the programs above: sometimes we had to
add or swap arguments of functions.

Another limitation revealed by the experiments is that for some
variations of the programs, the system infers too specific predicates
and does not terminate. For example, the verification for a-max
fails if we assert m ≥ a(j) instead of m ≥ n (where m is the
maximal element computed, a is the array, and j is some index).
Relaxing these limitations seems necessary for verification of larger
programs, and we plan to do so by adding heuristics to generalize
inferred abstraction types (e.g. by using widening techniques [9]).

Apart from the limitations above, our system is reasonably
fast. This indicates that, although higher-order model checking
has the extremely high worst-case complexity (n-EXPTIME com-
plete [28]), our overall approach works at least for small programs
as long as suitable predicates are found. See further discussions on
the scalability in Section 8.

7. Related Work
7.1 Model Checking of Higher-Order Programs

The model checking of higher-order recursion schemes has been
extensively studied [19, 24, 28]. Ong [28] proved the decidabil-
ity of the modal μ-calculus model checking of recursion schemes.
Kobayashi [22] then proposed a new framework of higher-order
program verification based on the model checking of recursion
schemes, already suggesting a use of predicate abstraction and CE-
GAR to deal with programs manipulating infinite data domain.
There were two missing pieces in his framework, however. One
was a practical model checking algorithm for recursion schemes
(note that the model checking of recursion schemes is in general n-
EXPTIME-complete), and the other was a method to apply predi-
cate abstraction and CEGAR to higher-order programs. The former
piece has been supplied later by Kobayashi [20], and supplying the
latter piece was the goal of the present paper.

In parallel to the present work, Unno et al. [26, 34] and Ong and
Ramsay [29] proposed applications of higher-order model checking
to verification of tree-processing programs. Their approaches are
radically different from ours. First, they use different abstraction
techniques: tree data are abstracted using either tree automata [26,
34] or patterns [29], which cannot abstract values using binary
predicates (such as 2 × x ≥ y). Secondly, The method of [26]
applies only to programs that can be expressed in the form of
(higher-order) tree transducers, and the extension in [34] requires
user annotations. Ong and Ramsay’s method [29] applies to general
functional programs and includes a CEGAR mechanism, but the
precision of their method is heavily affected by that of a variable
binding analysis, and their CEGAR is completely different from
ours. Their technique does not satisfy relative completeness like
Theorem 4.4.

7.2 Dependent Type Inference

There have been studies on automatic or semi-automatic inference
of dependent types [7, 11, 16, 31–33]. There are similarities be-
tween the goals of those studies and that of our work. First, one of
the goals of dependent type inference is to prove the lack of asser-

tion failures, as in the present work. Secondly, our technique can
actually be used for inferring dependent types. Recursion scheme
model checker TRECS [20] is type-based, and produces type infor-
mation as a certificate of successful verification. For example, for
the abstraction of the last example in Section 1, it infers the type
� → (true → �) → � for (the abstract version of) f . Combined
with the abstraction type of f , we can recover the following depen-
dent type for f : (x : int → (y : {ν : int | ν > x} → �) → �).

Though the goals are similar, the techniques are different. Ron-
don et al.’s liquid types [31] requires users to specify predicates (or
more precisely, shapes of predicates, called qualifiers) used in de-
pendent types. Jhala et al. [16] proposed an automatic method for
inferring qualifiers for liquid types. Their method extracts qualifiers
from a proof that a finite unfolding of a source program does not
get stuck, and has some similarity to our method to infer abstrac-
tion types from an error path. Unno and Kobayashi [33] proposed
an automatic method for inferring dependent types. They first pre-
pare templates of dependent types (that contain predicate variables)
and generate (possibly recursive) constraints on predicate variables.
They then solve the constraints by using an interpolating theorem
prover. Jhala et al. [17] also propose a similar method, where they
reduce the constraint solving in the last phase to model checking
of imperative programs. These approaches [16, 17, 31, 33] do sup-
port higher-order functions, but in a limited manner, in the sense
that nested intersection types are not allowed. The difference be-
tween dependent types with/without intersections is like the one
between context (or flow) sensitive/insensitive analyses. The for-
mer is more precise though it can be costly.9 In general, nested
intersection types are necessary to verify a program when function
parameters are used more than once in different contexts. Indeed,
as discussed in [25], several of the programs in Section 6 (e.g. neg,
where the first argument of twice is used in two different contexts)
require nested intersection types, and almost all the examples given
by Kobayashi [20, 22] call for nested intersection types.

The limitation of our current prototype implementation is that
the supported language features are limited. We believe that it is
possible to extend our implementation to deal with data structures.
In fact, the predicate abstraction introduced in Section 4 applies to
data structures given an appropriate theorem prover. We expect the
CEGAR part can also be extended, e.g. by restricting the properties
on data structures to size properties, by treating data constructors
as uninterpreted function symbols, etc.

Technically, most closest to ours is Terauchi’s work [32]. In his
method, candidates for dependent types are inferred from a finite
unfolding of a source program, and then a fixedpoint computation
algorithm is used to filter out invalid types. If the source program
is not typable with the candidates for dependent types, the pro-
gram is further unfolded and more candidates are collected. This
cycle (which may diverge) is repeated until the source program is
found to be well-typed or ill-typed. This is somewhat similar to
the way our verification method works: abstraction types are in-
ferred from an error trace (instead of an unfolding of a program),
and then higher-order model checking (which also involves a fixed-
point computation) is applied to verify the abstract program. If the
verification fails and an infeasible error path is found, the error
path is used to infer more predicates, and this cycle is repeated.
Thus, roughly speaking, our CEGAR phase corresponds to that of
Terauchi to find candidates for dependent types, and our phases
for predicate abstraction and higher-order model checking corre-
sponds to Terauchi’s fixedpoint computation phase. Advantages of
ours are: (i) our method can generate an error path as a counterex-
ample; there is no false alarm. On the other hand, a counterexample

9 Our method is an extreme case of context/flow sensitive analysis, which is
sound and complete for programs with finite data domains.



program S O C abst mc cegar total
intro1 27 2 1 0.00 0.00 0.00 0.01
intro2 29 2 1 0.00 0.00 0.00 0.00
intro3 30 2 1 0.00 0.00 0.00 0.00
sum 24 1 2 0.00 0.00 0.01 0.02
mult 31 1 2 0.01 0.00 0.02 0.03
max 42 2 1 0.00 0.00 0.03 0.03
mc91 32 1 2 0.01 0.04 0.02 0.07
ack 53 1 3 0.02 0.09 0.03 0.15
repeat 37 2 3 0.01 0.02 0.12 0.15
fhnhn 37 2 1 0.01 0.01 0.02 0.04
hrec 34 2 2 0.00 0.01 0.02 0.03
neg 47 2 1 0.01 0.01 0.01 0.03
apply 34 2 - - - - -
a-prod 70 2 4 0.07 0.06 0.08 0.22
a-cppr 149 2 6 0.32 2.82 0.26 3.40

program S O C abst mc cegar total
a-init 96 2 5 0.16 0.18 0.38 0.73
a-max 70 2 5 2.34 2.01 0.43 4.78
l-zipunzip 81 2 3 0.03 0.08 0.02 0.12
l-zipmap 65 2 4 0.07 0.09 0.03 0.20
hors 64 2 2 0.00 0.00 0.00 0.01
e-simple 27 2 1 0.00 0.00 0.00 0.00
e-fact 55 2 2 0.00 0.01 0.00 0.01
r-lock 54 1 5 0.01 0.02 0.02 0.04
r-file 168 1 12 0.30 4.78 0.16 5.23
sum-e 26 1 0 0.00 0.00 0.00 0.00
mult-e 33 1 0 0.00 0.00 0.00 0.00
mc91-e 32 1 0 0.00 0.00 0.00 0.00
repeat-e 35 2 0 0.00 0.00 0.00 0.00
a-max-e 70 2 2 0.01 0.06 0.06 0.13
r-lock-e 54 1 0 0.00 0.00 0.00 0.00
excep-e 27 2 0 0.00 0.00 0.00 0.00

Table 1. Results of preliminary experiments

of Terauchi’s method is an unfolding of a program, which may ac-
tually be safe. (ii) We infer predicates from an error trace, rather
than from an unfolding of a program; From the latter, too many
constraints are generated, especially for programs containing non-
linear recursions. (iii) Our method can find dependent types con-
structed from arbitrary boolean combinations of the inferred predi-
cates, while Terauchi’s method only looks for dependent types con-
structed from the formulas directly generated by an interpolating
theorem prover; thus, the success of the latter more heavily relies
on the quality or heuristics of the underlying interpolating theorem
prover. (iv) Because of the point (iii) above, our method (predicate
abstraction + higher-order model checking) can also be used in a
liquid type-like setting [31] where atomic predicates are given by a
user. (v) Because of the point discussed in Remark 1, the combina-
tion of our predicate abstraction and higher-order model checking
is strictly more powerful than Terauchi’s approach (as long as suit-
able predicates are found). (vi) Our method can be extended to ver-
ify more general properties (expressed by the modal μ-calculus), by
appealing to the results on higher-order model checking [24, 28].

7.3 Traditional Model Checking

Predicate abstraction and CEGAR have been extensively studied
in the context of finite state or pushdown model checking [2–
4, 8, 12–15]. Predicate abstraction has also been applied to the
game-semantics-based model checking [1]. We are not, however,
aware of previous work that applies predicate abstraction and CE-
GAR to higher-order model checking. As discussed in Section 1,
the extension of predicate abstraction and CEGAR to higher-order
model checking is non-trivial. One may think that defunctional-
ization [30] can be used to eliminate higher-order functions and
apply conventional model checking. The defunctionalization how-
ever uses recursive data structures to represent closures, so that the
resulting verification method is too imprecise, unless a clever ab-
straction technique for recursive data structures is available.

The three components of our verification method, predicate ab-
straction, higher-order model checking (TRECS), and CEGAR,
may be seen as higher-order counterparts of the three components
of SLAM [2–4]: C2BP, BEBOP, and NEWTON. Our use of depen-
dency in abstraction types appears to subsume Ball et al.’s poly-
morphic predicate abstraction [3]. For example, the id function in
[3] can be abstracted by using the abstraction type x : int[ ] →
int[λy.y = x].

There are a lot of studies to optimize predicate abstraction (es-
pecially for optimizing or avoiding the costly computation of ab-

stract transition functions) in the context of conventional model
checking [2, 27]. We have already borrowed some of the optimiza-
tion techniques as mentioned in Section 6, and plan to adapt more
techniques.

7.4 Abstract Interpretation

The combination of predicate abstraction and higher-order model
checking may be viewed as a kind of abstract interpretation [9]. The
abstract domain used for each functional value is defined by ab-
straction types, and predicate abstraction transforms a source pro-
gram into an HBP whose semantics corresponds to the abstract se-
mantics of the source program. Higher-order model checking then
computes the abstract semantics. An advantage here is that thanks
to the model checking algorithm [20] for higher-order recursion
schemes, the computation of the abstract semantics is often much
faster than a naive fixed-point computation (which is extremely
costly for higher-order function values).

8. Conclusion
We have proposed predicate abstraction and CEGAR techniques
for higher-order model checking, and implemented a prototype ver-
ifier. We believe that this is a new promising approach to automatic
verification of higher-order functional programs. Optimization of
the implementation and larger experiments are left for future work.

We conclude the paper with discussions on the scalability of
our method. The current implementation is not scalable for large
programs, but we expect that (after several years of efforts) we
can eventually obtain a much more scalable verifier based on our
method, for several reasons. First, the complexity of the model
checking of higher-order recursion schemes is n-EXPTIME com-
plete [28], but with certain parameters being fixed, the complexity
is actually polynomial (linear, if restricted to safety properties) time
in the size of a recursion scheme (or, the size of HBP). Furthermore,
n-EXPTIME completeness is the worst-case complexity, and re-
cent model checking algorithms [20, 23] do not immediately suffer
from the n-EXPTIME bottleneck. Secondly, the implementation of
the underlying higher-order model checker TRECS is premature,
and there is a good chance for improvement. Thirdly, the current
implementation of predicate abstraction and CEGAR is also quite
naive. For example, the current implementation computes abstract
programs eagerly. We expect that a good speed-up is obtained by
computing abstract programs lazily.
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