
A Truly Concurrent Game Model
of the Asynchronous π-Calculus

Ken Sakayori and Takeshi Tsukada

The University of Tokyo, Tokyo, Japan
{sakayori,tsukada}@kb.is.s.u-tokyo.ac.jp

Abstract. In game semantics, a computation is represented by a play,
which is traditionally a sequence of messages exchanged by a program
and an environment. Because of the sequentiality of plays, most game
models for concurrent programs are a kind of interleaving semantics. Sev-
eral frameworks for truly concurrent game models have been proposed,
but no model has yet been applied to give a semantics of a complex
concurrent calculus such as the π-calculus (with replication).
This paper proposes a truly concurrent version of the HO/N game model
in which a play is not a sequence but a directed acyclic graph (DAG)
with two kinds of edges, justification pointers and causal edges. By using
this model, we give the first truly concurrent game semantics for the
asynchronous π-calculus. In order to illustrate a possible application, we
propose an intersection type system for the asynchronous π-calculus by
means of our game model, and discuss when a process can be completely
characterised by the intersection type system.

Keywords: HO/N game model, true concurrency, asynchronous π-calculus

1 Introduction

Game semantics succeeded to give semantics for variety of programming lan-
guages such as PCF [1,21] and Idealized Algol [2].

The idea of game semantics has been applied to give models for concurrent
calculi such as CSP [23], Idealized Parallel Algol [18] and the asynchronous π-
calculus [24]. However, the sequential nature of plays forces these models to be
a kind of interleaving semantics; the causalities between events are obfuscated.

Hence it is natural to investigate a concurrent extension of the traditional
game models. Several frameworks for concurrent game models have been pro-
posed by several researchers [3,27,29,34], but no model has yet been applied to
give a semantics of a complex concurrent calculus such as the π-calculus (with
replication), as pointed out in [10]. The goal of this paper is to develop a truly
concurrent game model by which the asynchronous π-calculus can be interpreted.

The starting point of our development is an observation by Melliès [27]: in the
HO/N innocent game model [21, 32], only a part of the sequential information
is really relevant. For example, the order of consecutive occurrences of O- and

• ◦ • ◦ • ◦ • ◦
•

◦
•

◦
⇒ ⇒

Fig. 1: Idea of the desequentialization.

P-moves are indispensable, whereas that of consecutive occurrences of P- and
O-moves can be safely forgotten (unless the O-move is justified by the P-move).

Now it is natural to think of a play in which the relevant order information
is made explicit. Consider a traditional sequential play on the left side in Fig-
ure 1, where • (resp. ◦) represents an O-move (resp. a P-move) and a pointer is a
justification pointer. By making the relevant sequential information explicit, we
obtain a representation in the middle in Figure 1. Then because all the relevant
sequential information has been explicitly indicated by edges, we can simply for-
get the sequential information, resulting in the right representation in Figure 1.
This is our representation of a play that we call a DAG-based play.

A DAG-based play generated by this way from a sequential play satisfies
a certain property, which reflects the sequential nature of the target language
of the innocent game model [21]. In order to model a concurrent calculus, the
condition required for DAG-based plays should be weakened. This is the idea
that leads us to the definition of plays in this paper.

Following this idea, we develop a DAG-based game model for the asyn-
chronous π-calculus, guided by the sequential game model of Laird [24]. Our
model is truly concurrent in the sense that it distinguishes between a.b̄ | c.d̄ and
a.(b̄ | c.d̄) + c.(a.b̄ | d̄). Laird’s model can be reconstructed by lining up the nodes
of DAG-based plays of our model. We prove the soundness of our model by
reducing it to that of Laird’s model, using this relationship.

As a possible application of our model, we give an intersection type system
based on the relationship between intersection types and game semantics which
has been studied in the case of λ-calculus [7, 14, 37]. Based on a game-semantic
consideration, we characterise a class of processes that are completely described
by the intersection type system.

Organisation of the paper Section 2 defines our target language, a variant of
the asynchronous π-calculus. In Section 3, we define our truly concurrent game
model and relate it with sequential game models. A semantics of the π-calculus is
given in Section 4. Section 5 illustrates a possible application of our game model,
giving an intersection type system for a fragment of the π-calculus. Section 6
discusses related work and Section 7 concludes the paper.

2 Simply-Typed Asynchronous π-Calculus

We define the target language of the paper: the simply-typed asynchronous
polyadic π-calculus with distinction between input and output channels. This

Γ ` 0;Σ

Γ, x̄ : T ` P ;Σ, y : T

Γ ` ν(x̄, y).P ;Σ Γ, x̄ : ch[S,T], ȳ : S ` x̄〈ȳ, z〉;Σ,z : T

Γ ` P ;Σ Γ ′` Q;Σ′

Γ, Γ ′ ` P |Q;Σ,Σ′
Γ, ȳ : S ` P ;Σ,z : T

Γ ` x(ȳ, z).P ;Σ, x:ch[S,T]

Γ, ȳ : S ` P ;Σ,z : T

Γ ` !x(ȳ, z).P ;Σ, x:ch[S,T]

Fig. 2: Typing rules. (Contraction and exchange rules are omitted.)

is the calculus studied in the previous work of Laird [24], in which he gave an
interleaving (or sequential) game model.

We assume countably infinite sets of input names and of output names. Un-
like the standard π-calculus in which an input name a is a priori connected to
the output name ā, we do not assume any relationship between input and out-
put names but a connection is established by ν constructor. This design choice
significantly simplifies the denotational semantics.

The processes are defined by the following grammar: P,Q ::= 0 | x̄〈ȳ, z〉 |
x(ȳ, z).P | P |Q | !x(ȳ, z).P | ν(x̄, y).P. Here x (resp. x̄) ranges over input
(resp. output) names and x (resp. x̄) represents a (possibly empty) sequence of
input (resp. output) names. Name creation ν creates a pair of input and output
names. We abbreviate ν(x̄1, y1).ν(x̄n, yn).P as ν(x̄1 . . . x̄n, y1 . . . yn).P .

The structural congruence ≡ is defined as usual. The one-step reduction re-
lation −→ on processes is defined by the following rule:

ν(z̄,w).ν(x̄, y).(y(ā, b).P | x̄〈c̄,d〉 | Q) −→ ν(z̄,w).ν(x̄, y).(P{c̄/ā,d/b} | Q)

It is worth emphasising here that the communication only occurs over names that
are bound by ν. The reduction relation −→∗ is the reflexive transitive closure of
(−→ ∪ ≡). We write P⇓x̄ if P −→∗ ν(ȳ, z).(x̄〈ȳ′, z′〉 | Q) for some Q, where x̄
is free. Note that we can observe only an output action.

We require that processes are well-typed. The syntax of types is given by
S, T ::= ch[S1 . . . Sm, T1 . . . Tn]. We write x : ch[S1 . . . Sm, T1 . . . Tn] to mean
that x is an input name by which one receives m output names and n input
names at once. Similarly for ȳ : ch[S1 . . . Sm, T1 . . . Tn]. A sequence S1 . . . Sm of
types is often written as S and the empty sequence is written as . The type
ch[,] is abbreviated as ch[]. An input type environment is a finite sequence of
type bindings of the form x : T and an output type environment is that of the
form ȳ : S. A type judgement is of the form Γ ` P ;Σ, where Γ and Σ are input
and output type environments, respectively. Typing rules are listed in Figure 2.

Remark 1. (1) A calculus with a priori connection between an input name x and
an output name x̄ can be simulated by passing/receiving a pair (x, x̄) of input and
output names. Via this translation our game semantics is applicable to a calculus
with a priori connection because the translation reflects may-testing equivalence.
(2) The standard parallel composition, which invokes communications of the two
processes, can be expressed as ν(āb̄,ab).(P |Q|(a′→ ā)|(b→ b̄′)) where a and b̄
are free names in P and Q, and a′ → ā is a “forwarder”, a process forwarding
names received from a′i to āi.

3 Concurrent HO/N Game Model

This section introduces a truly concurrent game model in which a play is not a
sequence but a directed acyclic graph (DAG). A node of a play is labelled by
a move representing an event; an edge represents either a justification pointer
or causality. The key is the notion of plays (Section 3.2) and of interactions
(Section 3.3). The other parts are relatively straightforward adaptation of the
techniques in the standard HO/N game model (e.g. [21]) or Laird’s model [24].

3.1 Arenas

The definition of arenas is (essentially) the same as the definition of arenas in
the case of the sequential game model of π-calculus [24]. The differences from
the standard definition (e.g. [21]) are (1) all moves are questions, and (2) the
owner of moves does not have to alternate.

Definition 1 (Arena). An arena is a triple A = (MA, λA,`A), where MA

is a set of moves, λA : MA → {P,O} is an ownership function and `A ⊆
({?} +MA) ×MA is an enabling relation that satisfies: for every m ∈ MA,
there uniquely exists x ∈ {?}+MA such that x `A m.

We say that m is a P-move if λA(m) = P ; it is an O-move if λA(m) = O.
Every move represents an output action: a P-move is an output action of the
process and an O-move is that of the environment (see a discussion after Defi-
nition 4). Let λ⊥A denote the negation of λA i.e. λ⊥A(m) = O (resp. λ⊥A(m) = P)
if λA(m) = P (resp. λA(m) = O). A move m is initial if ? `A m. An arena
is negative (resp. positive) if all initial moves are O-moves (resp. P-moves). In
what follows, we shall consider only negative arenas (hence we often use arenas
to mean negative arenas). The empty arena is defined by I := (∅, ∅, ∅).

Negative and positive arenas correspond to input and output type environ-
ments, respectively. Hence a judgement, which consists of a pair of input and
output type environments, should be expressed as a pair of arenas.

Definition 2 (Arena pair). An arena pair is a pair (A,B) of (negative) are-
nas. We write MA,B for MA + MB. The ownership function is defined by
λA,B = [λ⊥A, λB]. The enabling relation `A,B is given by: m `A,B m′ if and only
if m `A m′ or m `B m′. (In particular, ? `A,B m iff ? `A m or ? `B m′.)

Note that an arena pair is not a negative arena since it has an initial P-move.

Example 1. Three (negative) arenas A, B and C are illustrated in Fig. 3, as
well as the arena pair (A,B). Those arenas are used in examples in this paper.
Nodes are labelled by moves and edges represent the enabling relation. If a
name is overlined, the move is a P-move; otherwise it is an O-move. The arena
pair (A,B) corresponds to the pair of the output type environment Γ = ā1 :
ch[, ch[]], ā2 : ch[] and the input type environment Σ = b1 : ch[ch[], ch[ch[],]].
(Channel names do not have to coincide with move names.)

A

a1

a11

a2

B

b1

b̄11 b12

b̄121

C

c1

c̄11

(A,B)

ā1

ā11

ā2 b1

b̄11 b12

b̄121

Fig. 3: Examples of arenas and an arena pair.

3.2 DAG-based plays

In the standard HO/N game model [21], a play is a sequence of moves equipped
with pointers, called justification pointers. The justification pointers express the
binder-bindee relation and the sequential structure expresses the temporal re-
lation between the events in the sequence (e.g. in the sequence s1 a s2 b s3, the
event b occurs after a). The causal relation is left implicit (cf. Section 3.5).

In the proposed game model, we explicitly describe the causal relation as
well as the justification pointers.

Definition 3 (Justified graph). A justified graph over an arena pair (A,B)
is a tuple s = (Vs, ls,ys , s) where:

– Vs is a finite set called the vertex set
– ls is the vertex labelling, that is ls : Vs →MA,B

– ys ⊆ Vs × Vs is the justification relation
– s ⊆ Vs × Vs is the causality relation

such that

– (Vs, ys ∪ s) is a DAG i.e. there is no cycle v (s ∪ys)+ v.
– If ls(v) is initial, then there is no node v′ such that v ys v′.
– If ls(v) is not initial, then there exists a unique node v′ such that v ys v′.

Furthermore this v′ satisfies ls(v
′) `A,B ls(v).

Note that ys and s do not have to be disjoint. We define �s := (ys ∪ s). The
set of justified graphs over an arena pair (A,B) is denoted by JA,B.

In what follows, we shall identify isomorphic justified graphs.
Given a justified graph s over (A,B), a P-node (resp. an O-node) is a node

v ∈ Vs whose label is a P-move (resp. an O-move). We write V Ps for the set of
P-nodes and V Os for the set of O-nodes (e.g. V Ps := {v ∈ Vs | λA,B(ls(v)) = P}).

Definition 4 (Play). Let s = (Vs, ls,ys , s) be a justified graph over (A,B). It
is a play if it satisfies the following conditions:

(P1) for every v, v′ ∈ Vs, v s v′ implies v ∈ V Ps and v′ ∈ V Os ,
(P2) for every vp ∈ V Ps and vo ∈ V Os , if vp �s + vo, then vp s vo, and
(P3) for every vo ∈ V os , there exists vp ∈ V Ps such that vp s vo.

We write PA,B for the set of plays over (A,B).

ā1 b1

b12 b12

b̄121 b̄11

s1 ∈ PA,B

ā1

ā11

b1

b12

b̄121

s2 ∈ PA,B

ā1

ā11

b1

b12

s3 ∈ PA,B

Fig. 4: Examples of plays over the arena pair (A,B) in Figure 3.

Condition (P1) reflects the asynchronous nature of the target language. Re-
call that a P-move corresponds to an output action of a process and an O-move
to an output action of the environment. No P-node should be causally related
to P-nodes since an output action of the process cannot cause any other output
of the process. Similarly no O-node should be causally related to O-nodes since
an output action of the environment cannot cause any other output of the envi-
ronment (provided that the environment is also described by the asynchronous
π-calculus). An output action of a process may cause an output action of the
environment; however it is a matter of the environment and a play describes the
behaviour of a process, not the environment. Hence s ⊆ V Ps × V Os .

Condition (P2) comes from a purely technical requirement. (We need this
condition to establish Lemma 2, as well as a proposition stating the copycat
strategy is the identity.)

Condition (P3) is the counterpart of the even-length condition. Here we re-
gard the even-length condition for sequential plays as the requirement that every
O-move in the sequence should be responded by a P-move.

Example 2. Figure 4 shows three different plays over the arena pair (A,B) in
Figure 3. The solid arrows represent justification pointers, and squiggly arrows
represent causalities. Nodes are labelled by moves and different nodes may be
labelled by a same move. Note that plays may have a join point, i.e. a node that
is linked to two “incomparable” nodes, like the node labelled by ā11 in s2.

Remark 2. A play can be seen as a process, e.g. the play s2 in Figure 4 cor-
responds to the process ν(ā11, a11).(b1(, b12).b12(b̄121,).(ā11 | b̄121) | ā1〈 , a11〉)
(whose type differs from that described by the arena pair). The formal descrip-
tion of the connection to the linear internal π-calculus is left for the future work.

3.3 Strategies and composition

Strategy In most variants of sequential game models, a strategy σ is a collection
of plays that is (even-length) prefix closed : if smOmP ∈ σ, then s ∈ σ. The set
of strategies in our game model is defined by the same way, though the notion
of prefix should be adapted to our setting.

Definition 5 (Prefix). Let s = (Vs, ls,ys , s) be a play. Let U ⊆ Vs be a subset
that satisfies (1) v ∈ U and v �s v′ implies v′ ∈ U and (2) for all vo ∈ UO there

exists vp ∈ UP such that vp s vo. The prefix s[U] := (U, l,y,) of s induced
by U is the restriction of s to U , i.e.,

l(v) := ls(v) y := (ys) ∩ (U × U) := (s) ∩ (U × U).

We write s′ v s if s′ is a prefix of s. A prefix of a play is a play.

Example 3. In Figure 4, the play s3 is a prefix of s2 induced by the set of nodes
labelled by m ∈ {ā1, ā11, b1, b12}.

Definition 6 (Strategy). Let (A,B) be an arena pair. A set σ ⊆ PA,B of
plays over (A,B) is a strategy of (A,B), written as σ : A → B, if it satisfies
prefix-closedness (S1):

(S1) If s ∈ σ and s′ v s, then s′ ∈ σ.

Composition The composition of strategies is defined by using the notion of
interactions. Since plays are not sequences but graphs, an interaction should also
be represented by a graph that we call an interaction graph.

Definition 7. Let (A,B,C) be a triple of arenas. The set MA,B,C of moves of
(A,B,C) is the disjoint union MA +MB +MC . The enabling relation `A,B,C
is defined by: x `A,B,C m if x `X m for some X ∈ {A,B,C}. The ownership
function is defined by: λA,B,C := [λA, λB , λC]. The set JA,B,C of justified graphs
of (A,B,C) is defined by the same way as in Definition 3.

For X ∈ {A,B,C, (A,B), (B,C), (A,C)}, we write VX for the set of nodes re-
stricted to the component X and V PX and V OX for the sets of nodes labelled by
P-moves and by O-moves in the component X. For example, v ∈ V PA,B means ei-
ther (1) lu(v) ∈MB and λB(lu(v)) = P , or (2) lu(v) ∈MA and λA(lu(v)) = O.

Definition 8 (Restriction). Let u = (V, l,y,) be a justified graph over
(A,B,C) and X ∈ {(A,B), (B,C), (A,C)}. The restriction u�X of u to X is
defined by u�X := (V �X , l�X , y�X , �X), where

V �X := VX , l�X(v) := l(v), y�X := (y) ∩ (VX × VX).

The definition of �X needs some care. If X ∈ {(A,B), (B,C)}, then �X
is just the restriction of the original causal relation, i.e. �X := {(v, v′) ∈
V PX × V OX | v v′} (cf. Condition (P1)). If X = (A,C), then �A,C relates
moves linked through the intermediate component B, i.e. �A,C := {(v, v′) ∈
V PA,C × V OA,C | ∃n ≥ 0. ∃v1, . . . , vn ∈ VB . v v1 · · · vn v′}.

Example 4. Figure 5 shows a justified graph u over the triple (A,B,C) (in Fig-
ure 3) and its restrictions to components (A,B), (B,C) and (A,C). Note that
although ā11 6 u c1, we have ā11 u �A,C c1 because ā11 u b1 u c1.

Definition 9 (Interaction graph). Let u ∈ JA,B,C be a justified graph over
(A,B,C) and V be the set of nodes of u. We say that u is an interaction graph
if it satisfies the following conditions.

a1

a11

b1

b12

c1

c̄11

u ∈ JA,B,C
ā1

ā11

b1

b12

u�A,B ∈ PA,B
b̄1

b̄12

c1

c̄11

u�B,C ∈ PB,C
ā1

ā11

c1

c̄11

u�A,C ∈ PA,C

Fig. 5: Example of a justified graph and restrictions.

b1

b̄11 b12

(a)

b̄1

b11 b̄12
b1

b̄11 b12

(b)

b̄1

b11 b̄12
b1

b̄11 b12

(c)

Fig. 6: Construction of a copycat play.

(I1) If v u v′, then (v, v′) ∈ V PX × V OX for some X ∈ {(A,B), (B,C)}.
(I2) Both u�A,B and u�B,C are plays.

Condition (I1) is a variant of the switching condition. The set of interaction
graphs over (A,B,C) is denoted as Int(A,B,C).

In fact u in Example 4 is an interaction graph.

Definition 10 (Composition). Let σ : A → B and τ : B → C be strategies.
The composition of σ and τ is defined by

τ ◦ σ := {u�A,C | u ∈ Int(A,B,C), u�A,B ∈ σ, u�B,C ∈ τ}.

Note that the definition of composition is applicable to sets of plays that are not
necessarily strategies. By abuse of notation, we shall write τ ◦ σ even if σ and τ
are not strategies but just sets of plays.

Theorem 1. The composite of strategies is a strategy. The composition is as-
sociative.

Category We define the category P of negative arenas and strategies: an object
of P is a (negative) arena and a morphism from A to B is a strategy σ : A→ B.
The composite of σ : A → B and τ : B → C is given by the composition τ ◦ σ
of strategies defined above. Given an arena A, the identity morphism idA : A→
A is the “copycat strategy”: when the environment makes a move m in one
component, then it responds by making a copy of m in the other component. It
is the set of copycat plays, whose construction is illustrated in Figure 6: (a) take a
“justified graph without causality” of the arena (in this example, the arena is B
in Figure 3); (b) make positive and negative copies and connect the corresponding
nodes by a causal edge in the appropriate direction; and (c) add causal edges
so as to satisfy Condition (P2), resulting in a play over (B,B).

3.4 Distributive-closed Freyd category

In this section, we define the categorical structures of P, which is used in Sec-
tion 4 to give an interpretation of the π-calculus. A category with the structures
below is called a distributive-closed Freyd category [24]. The definitions in this
section are adapted from the interleaving game model for the π-calculus [24].

Monoidal product Let A = (MA, λA,`A) and B = (MB , λB ,`B) be arenas. The
arena A�B is defined as (MA+MB , [λA, λB],`A,B), where `A,B is the enabling
relation defined in Definition 2. Given strategies σ : A→ B and τ : C → D, the
strategy σ� τ : A�C → B�D is defined by the juxtaposition of plays in σ and
τ , namely σ� τ := {s] t | s ∈ σ, t ∈ τ} where s] t is the juxtaposition of plays.
Then the triple (P,�, I) is a symmetrical monoidal category.

Closed Freyd structure An input prefixing a(x̄,y).P should be interpreted by
using a kind of closed structure (intuitively because the input prefix bounds
variables in P like λ-abstraction). Laird [24] used closed Freyd categories [33].

A Freyd category consists of a symmetric (pre)monoidal category P, a carte-
sian categoryA and an identity-on-object strict (pre)monoidal functor ! : A → P.
Intuitively P is that of types and “terms” whereas A is the category of types
and “values”; the functor ! gives us a way to regard a “value” as a “term”.
In our context, “terms” are processes and “values” are processes of the form∑
i ai(x̄i,yi).Pi, where Pi has no free input channel except for those in yi.
We define the game-semantic counterpart of the processes of the this form.

Definition 11 (Well-opened play, strategy). A play s is well-opened if it
contains precisely one initial O-node v0 to which all other nodes are connected
(i.e. v �s ∗ v0 for every v ∈ Vs). We write WA,B for the set of well-opened
plays over (A,B). A well-opened strategy from arena A to arena B, written as

σ : A
•→ B, is a set σ of well-opened plays that is prefix-closed (S1).

Then we define an operator !, a mapping from well-opened strategies to
strategies and the composition of well-opened strategies by using !.

Definition 12. Let σ : A
•→ B be a well-opened strategy. The strategy !σ : A→

B is defined by !σ := {s1] · · ·] sn | n ≥ 0, ∀i ≤ n. si ∈ σ} where s1] · · ·] sn
is the juxtaposition of plays s1, . . . , sn.

Definition 13 (Composition of well-opened strategies). Let σ : A
•→ B

and τ : B
•→ C be well-opened strategies. We define τ ◦A σ := τ ◦ !σ.

Lemma 1. The composite of well-opened strategies with respect to ◦A is a well-
opened strategy. The composition ◦A of well-opened strategies is associative.

The category A of negative arenas and well-opened strategies is defined by
the following data: an object is a negative arena, a morphism from A to B is a
well-opened strategy σ : A

•→ B, the composition is given by ◦A. The identity
morphism is idA ∩WA,A, where idA is the copycat strategy. The category A is
cartesian: the cartesian product of A and B is A�B.

∗

A⊥ B

(a) A ⇀ B.

∗ ∗
A B A C⇀ ⇀

A ⇀ σ

idA

σ

(b) A ⇀ σ.

∗

Λ7→

!A � B → C A → B ⇀ C

σA,B

σA,C

σB,C
σA,B

σA,C

σB,C

(c) Λ(σ).

Fig. 7: The action of A ⇀ (−) and Λ.

By defining !A := A for objects, the operation ! becomes a functor ! : A →
P. This is identity on objects and strict symmetric monoidal functor and thus
(A,P, !) is a Freyd category.

Lemma 2. The Freyd category (A,P, !) is closed, i.e. for every arena A, the
functor !(−)�A : A → P has the right-adjoint A ⇀ (−) : P → A.

The action of A ⇀ (−) on objects and on morphisms is illustrated in Figure 7. We
write Λ for the bijective map P(!A�B,C)→ A(A,B ⇀ C) and appA,B : !(A ⇀
B)�A→ B for the counit. The bijection P(!A�B,C) ∼= A(A,B ⇀ C) induced
by the adjunction intuitively corresponds to the following bijection of the π-
calculus processes: x̄ : S, ȳ : T ` P ; z : U ←→ x̄ : S ` a(ȳ, z).P ; a : ch[T ,U].

Distributive law The process obtained by (the π-term representation of) the
above adjunction has the input prefix a(ȳ, z) as expected but it has only one
free input channel. We use the distributive law of the distributive-closed Freyd
category to model a process with multiple free input channel. By using the syntax
of the π-calculus, the distribution law can be seen as the following map:

x̄ : S ` a(ȳ, zz′).P ; a : ch[T ,UU ′] −→ x̄ : S ` a(ȳ, z).P ; a : ch[T ,U], z′ : U ′.

Definition 14 (Distributive-closed Freyd category [24]). A closed Freyd
category ! : A → P is distributive-closed if there is a family of morphisms
%A : !(A ⇀ (B � C)) −→ B � !(A ⇀ C) in P, natural in B and C which
makes certain diagrams commute.

Theorem 2. The game model ! : A → P is distributive-closed.

Trace The operator ν(x̄, y).P is interpreted as a trace operator. We define
TrBA,C(f) := appB,C ◦ symmB,B⇀C ◦ %B,B,C ◦ !Λ(symmB,C ◦ f), given a mor-
phism f : A�B → C�B in P. Then Tr is the trace operator for the symmetrical
monoidal category P [24].

Additional structures Some additional structures are required to interpret the
π-calculus: the minimum strategy ⊥A,B (with respect to the set-inclusion), the

diagonal ∆A : A
•→ A � A, the codiagonal ∇A : A � A •→ A (defined by ∇A :=

π1∪π2 where πi : A�A
•→ A is the projection), and the dereliction derA : A→ A

(defined as idA ∩WA,A).

3.5 Relation to sequential game models

Laird’s interleaving game model Our model can be seen as a truly concurrent
version of the interleaving game model PL of Laird [24]. The idea is to relate
a (concurrent) play s = (Vs, ls,ys , s) to an interleaving play by lining up the
nodes in Vs in such a way that if v1 �s v2, then v2 appears before v1. We write
|s| for the set of sequential plays obtained by this way.

Example 5. Let s2 be the play in Figure 4. Then |s2| is given as: ā1 b1 b12 ā12 b̄121 , ā1 b1 b12 b̄121 ā12 , b1 ā1 b12 ā12 b̄121 , b1 ā1 b12 b̄121 ā12 ,

b1 b12 ā1 ā12 b̄121 , b1 b12 ā1 b̄121 ā12 , b1 b12 b̄121 ā1 ā12

Theorem 3. |−| induces an identity-on-object functor from P to PL, which
preserves the structure of distributed-closed Freyd categories (and the additional
structures). Furthermore |σ| is the minimum strategy if and only if so is σ.

Sequential HO/N game model The standard sequential HO/N game model [21] is
a subcategory of our concurrent model. Since our game model only have question
moves, we compare our model with the HO/N game model without answer (and
thus without well-bracketing).

An arena A is alternating if m `A m′ implies λA(m) = λ⊥A(m′). Let G be
the category of negative alternating arenas and innocent strategies (we omit the
definition, which is standard). We write pŝq for the P-view [21] of the sequential
play ŝ. Given a sequential play ŝ = m1 . . .mn, a DAG-based play is given by

‖ŝ‖ := (Vŝ, lŝ, {(i, j) | ρŝ(i) = j}, {(i, j) ∈ V Pŝ × V Oŝ | mj ∈ pm1 . . .miq})

where Vŝ := {1, . . . , n}, lŝ(i) := mi and ρŝ is the partial function describing the
justification pointer. Note that the occurrence mi of a P-move is causally related
to an occurrence mj of an O-move if and only if mj appears in the P-view of
mi. This map is naturally extended to strategies, namely ‖σ̂‖ := {‖ŝ‖ | ŝ ∈ σ̂}.

Theorem 4. ‖−‖ induces a faithful functor from G to P.

Remark 3. It is natural to ask if one can give a similar map from Laird’s inter-
leaving model. The answer seems negative: all maps that we have checked are
not functorial. See [8] for a related result.

4 Game Semantics of the π-calculus

We give an interpretation of the π-calculus, following the result of Laird [24]
applicable to every distributive-closed Freyd category with additional structures.

A type and a type environment are interpreted as objects of P. The inter-
pretation of a type ch[S,T] and a sequence S of types are defined by:

Jch[S, T]K := JSK⇀ JT K JS1 . . . SnK := JS1K� · · · � JSnK J K := I.

JΓ ` 0;ΣK = ⊥JΓ K,JΣK

JΓ, Γ ′ ` P |Q;Σ,Σ′K = JP K� JQK
JΓ, x̄ : ch[S,T], ȳ : S ` x̄〈ȳ, z〉;Σ,z : T K = ⊥JΓ K,JΣK � appJSK,JT K

JΓ ` x(ȳ, z).P ;Σ, x : ch[S,T]K = (idJΣK � derJ(S,T)K) ◦ J!x(ȳ, z).P K
JΓ ` !x(ȳ, z).P ;Σ, x : ch[S,T]K = %JSK,JΣK,JT K ◦ !Λ(JP K)

JΓ ` ν(x̄, y).P ;ΣK = Tr
JT K
JΓ K,JΣK(JP K)

Fig. 8: Interpretation of processes. (Contraction and exchange rules are omitted.)

The interpretation of an input type environment is given by the tensor product
of elements, e.g. Jx1 : S1, . . . , xn : SnK := JS1K� · · · � JSnK.

A process Γ ` P ;Σ is interpreted as a morphism JP K : JΓ K → JΣK in P.
The interpretation is defined by induction on the type derivations. The rules are
listed in Figure 8.

The distributive-closed Freyd structure together with additional structures
(of ∆, ∇, ⊥, der) gives a (weak) soundness result with respect to the reduction.

Theorem 5. Let Γ ` P ;Σ and Γ ` Q;Σ be processes of the same type.

1. If P ≡ Q, then JΓ ` P ;ΣK = JΓ ` Q;ΣK.
2. If P −→ Q, then JΓ ` P ;ΣK ⊇ JΓ ` Q;ΣK.

The relationship to Laird’s model (Theorem 3) gives a finer result, which does
not follow from the general theory of the distributive-closed Freyd categories.

Lemma 3 (Adequacy). P ⇓x̄ iff JP K 6= ⊥ for every process x̄ : ch[] ` P ; .

Proof. Because of Theorem 3, we have |JP K| = JP KL, where JP KL is the inter-
pretation of the process in Laird’s game model [24]. Laird [24] shows that P ⇓x̄
if and only if JP KL 6= ⊥. Since |−| preserves ⊥, we obtain the claim. ut

Lemma 3 and monotonicity of the interpretation lead to the next theorem.

Theorem 6. Let x̄ be a testing name that does not occur in Γ . If JΓ ` P ;ΣK ⊆
JΓ ` Q;ΣK, then C[P] ⇓x̄ implies C[Q] ⇓x̄ for all context C[].

Unlike Laird’s model [24], our model is not complete since our model is truly con-
current. For example, Ja().b̄〈〉 | c().d̄〈〉K 6= Jν(x̄, x).(x̄〈〉 | x().a().(b̄〈〉 | c().d̄〈〉) |
x().c().(a().b̄〈〉 | d̄〈〉))K in our model, whereas they are testing equivalent.

5 Discussion: Relationally-Describable Process

Using our game model, we study the relational interpretations of process in the
form of intersection type system that describes the behaviour of processes. The

b1ā1

b̄11 b12

⇒
b1a1

b̄11 b12

c1 b̄1 c1

b11 b̄12

⇐

Fig. 9: Composable plays with a cycle.

intersection type system is a fully abstract model for a class of process which
we characterise with the help of “interaction graph”.

The syntax of types and intersections are defined by the following grammar:

ϕ,ψ ::= ch[ξ1 . . . ξn, ζ1 . . . ζk] ξ, ζ ::= 〈ϕ1, . . . , ϕn〉

where 〈· · · 〉 is a finite multiset defined by an enumeration of the elements. A
type environment is a sequence of type bindings of the form x : ξ (or ȳ : ζ).
Given intersections ξ = 〈ϕ1, . . . , ϕn〉 and ζ = 〈ψ1, . . . , ψk〉, we write ξ ∧ ζ for
〈ϕ1, . . . , ϕn, ψ1, . . . , ψk〉. This operation is extended to type environments by
pointwise application. The typing rules are listed below (some rules are omitted):

∅ ` 0; ∅
Ξ ` P ; Θ Ξ ′ ` P ′; Θ′

Ξ,Ξ ′ ` P |P ′; Θ,Θ′ x̄ : ch[ξ, ζ], ȳ : ξ ` x̄〈ȳ, z〉; Θ,z : ζ

Ξ, ȳ:ξ ` x(ȳ, z).P ; Θ,z:ζ

Ξ ` x(ȳ, z).P ; Θ, x:ch[ξ, ζ]

∀i ∈ I. Ξi ` x(ȳ, z).P ; Θi∧
i∈IΞi ` !x(ȳ, z).P ;

∧
i∈IΘi

Ξ, x̄:ξ ` P ; Θ, y:ξ

Ξ ` ν(x̄, y).P ; Θ

This type system is inspired by the correspondence between intersection type
systems and the operation called time forgetting map [4], which is an operation
that forgets the temporal structure of plays, in sequential game models (see,
e.g., [37]). Time forgetting map is the operation that forgets the causal relation
in the case of our concurrent game model.

Completeness of the type system holds for every process, but soundness does
not; the reason is explained by a game-semantic consideration. We would thus
like to find a class for which the relational interpretation is sound.

Let s ∈ PA,B and t ∈ PB,C be plays. We say that s and t are composable if
s�B coincides with t�B except for the causal relations. Then it would be natural
to think of an “interaction graph” by composing them (see Fig. 9). Unfortu-
nately the resulting “interaction graph” may not be acyclic and hence not be an
interaction graph; in this case we say that the pair (s, t) contains a cycle.

This notion of cycle can be extended to strategies and processes. The compo-
sition of strategies τ ◦ σ is cycle-free if every pair of composable plays s ∈ σ and
t ∈ τ is cycle-free. A process P is relationally-describable if every composition in
the definition of JP K is cycle-free.

Theorem 7. Let Γ ` P ; Σ be a relationally-describable process and let x̄ ∈
dom(Γ). Then P ⇓x̄ if and only if x̄ : ch[ξ, ζ] ` P ; ∅ for some ξ and ζ.

This is because the operation of forgetting the causal relation commutes with
cycle-free composition. Note that the notion of cycle is stronger than deadlock:
ν(āb̄, ab).(a1.b̄2|b3.ā4|ā5) (subscripts are used to distinguish occurrences) is not
relationally-describable because connecting a1 to ā4 and b3 to b̄2 creates a cycle.

Restricting the form of processes by focusing on cycles is a reminiscent of
the correctness criterion for MLL proof nets. The formal relationship between
our notion of cycle in an interaction graph and the correctness criterion, and
the connection between cycle (in our sense) and the type system, which gives a
typed π-calculus corresponding to polarised proof-nets satisfying the correctness
criterion, proposed by Honda and Laurent [19] are worth investigating.

6 Related Work

Melliès [27] studied HO/N innocent strategies from a truly concurrent point of
view. Among others, he introduced the notions of alternating homotopy and
diagrammatic innocence, which influence to this work. These ideas were subse-
quently developed by Melliès and Mimram [29,30], who introduced asynchronous
games. They focused on the fact that some moves of a play in an innocent strat-
egy can be exchanged, and studied games whose rules explicitly describe which
moves should be commutable. Our game model is also inspired by [27] (and [28])
but we focused on a different aspect of the alternating homotopy, that is, the
fact that the connection between a successive pair of O- and P-moves (in HO/N
innocent strategies) are quite tight (see also [25,36]); in our game model, a strat-
egy explicitly describes indispensable connections between events. Because of
these differences, their game model differs from ours; indeed our strategy is not
necessarily positional. Nevertheless those models seems closely related; for exam-
ple, it seems worth investigating the connection between scheduled strategies [30]
and cycle-free composition.

A related approach using a map of event structures has been proposed by
Rideau and Winskel [34] and extensively studied recently [9, 10]. In this game
model, a strategy is a map from an event structure describing the internal causal
relation to another event structure expressing the observable events. We think
that their model should be closely related to the (pre)sheaf version [36] of our
game model, although we have not established any formal relationship yet.

From a technical point of view, an important difference between above models
and our model is the way to deal with duplication of moves. Our model uses
HO/N-style justification pointers, whereas the above models use the idea of
thread indexing [10, 26] in the style of AJM game model [1]. Both approaches
have advantages and disadvantages (for example, an advantage of the HO/N-
style is that a morphism is a strategy, not an equivalence class of strategies
modulo reindexing). Hence we think that it is good to have a truly concurrent
model using justification pointers.

Laird [24] briefly discussed an idea of a truly concurrent version of his in-
terleaving game model, introducing the notion of justified pomset. His idea is
very closed to ours; indeed a play s in our game model can be seen as a pomset
(Vs,�s ∗) ordered by (reflexive transitive closure of) the adjacent relation �s ∗.

A DAG-based reformulation of the HO/N game model is a reminiscent of L-
nets [13,17]. The conditions required for L-nets are essentially the same as those
we require for plays, though L-nets corresponds to strategies, not to plays. An

interpretation of the π-calculus using differential nets [15] seems to be relevant
to our development.

The game-semantics study of this paper has many parallels to the syntactic
study of the π-calculus. The relationship between the HO/N game model for
PCF [21] and the π-calculus has originally been studied by Hyland and Ong
themselves [20], who gave a translation from PCF terms to processes of the
π-calculus based on the idea of their game model. The π-terms representing
sequential functional computation can be characterised by a simple type system
proposed by Berger, Honda and Yoshida [5], which lead to the type system
of [19]. We conjecture that processes typed by the simple type system of [5,19] is
related to relationally-describable processes. Boreale [6] gave an encoding from
the asynchronous π-calculus to the internal π-calculus [35]. Our game model can
be seen as a variant of the encoding by regarding the plays as the processes of
the linear internal π-calculus, in which each name must be used exactly once.

There are some pieces of work based on the techniques other than games but
related to this work, such as event structure semantics of several variants of the
π-calculus by Crafa, Varacca and Yoshida [11,12] and Varacca and Yoshida [38],
and a data-flow semantics by Jagadeesan and Jagadeesan [22].

7 Conclusion and Future Work

We have developed a truly concurrent version of the HO/N game model [21,32],
in which a computation is represented by a DAG of messages instead of a se-
quence. The resulting game model has the categorical structure needed to inter-
pret the asynchronous π-calculus proposed by Laird [24]. By using the connection
between our model and Laird’s model [24], we have proved soundness of the in-
terpretation of the processes in our concurrent game model. This is the first truly
concurrent game semantics for the π-calculus.

We have several topics left for future work:

– Formal description of the connection between plays and processes mentioned
in Remark 2. By this connection, our game semantics can be seen as an
approximation of the processes of the π-calculus by a linear π-calculus, which
is a reminiscent of the Taylor expansion of the λ-calculus [16] (see also [37]).

– Development of the (pre)sheaf version of the game model [36], which would
be related to the game model based on [34].

– Development of a model of the synchronous π-calculus. This requires us to
deal with causal edges from O-moves and/or to P-moves. To simply relax
the requirements for does not seem to work: for example, the copycat
strategy of this paper is no longer the identity in the relaxed version.

– Development of a model of the π-calculus with the matching primitive. We
expect that a nominal game model [31] would be useful for this purpose.

Acknowledgements. We would like to thank Naoki Kobayashi and anonymous
referees for useful comments. This work is partially supported by JSPS Kakenhi
Grant Number 15H05706 and JSPS Kakenhi Grant Number 16K16004.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

2. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for idealized algol with active expressions. Electr. Notes Theor. Comput.
Sci. 3, 2–14 (1996)

3. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: 14th
Annual IEEE Symposium on Logic in Computer Science. pp. 431–442 (1999)

4. Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: Timeless games. In: 11th Interna-
tional Workshop on Computer Science Logic. pp. 56–77 (1997)

5. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the pi-calculus. In: TLCA.
pp. 29–45 (2001)

6. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi.
Theor. Comput. Sci. 195(2), 205–226 (1998)

7. Boudes, P.: Thick subtrees, games and experiments. In: Typed Lambda Calculi and
Applications, 9th International Conference, TLCA 2009. Proceedings. pp. 65–79
(2009)

8. Castellan, S., Clairambault, P.: Causality vs. interleavings in concurrent game
semantics. In: 27th International Conference on Concurrency Theory, CONCUR
2016. pp. 32:1–32:14 (2016)

9. Castellan, S., Clairambault, P., Winskel, G.: Symmetry in concurrent games. In:
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Sci-
ence Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), CSL-LICS ’14. pp. 28:1–28:10 (2014)

10. Castellan, S., Clairambault, P., Winskel, G.: The parallel intensionally fully ab-
stract games model of PCF. In: 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015. pp. 232–243 (2015)

11. Crafa, S., Varacca, D., Yoshida, N.: Compositional event structure semantics for the
internal pi -calculus. In: CONCUR 2007 - Concurrency Theory, 18th International
Conference, CONCUR 2007. pp. 317–332 (2007)

12. Crafa, S., Varacca, D., Yoshida, N.: Event structure semantics of parallel extru-
sion in the pi-calculus. In: Foundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012.
pp. 225–239 (2012)

13. Curien, P.-L., Faggian, C.: An approach to innocent strategies as graphs. Inf. Com-
put. 214, 119–155 (2012)

14. Di Gianantonio, P., Lenisa, M.: Innocent game semantics via intersection type
assignment systems. In: Computer Science Logic 2013, CSL 2013. pp. 231–247
(2013)

15. Ehrhard, T., Laurent, O.: Interpreting a finitary pi-calculus in differential interac-
tion nets. Inf. Comput. 208(6), 606–633 (2010)

16. Ehrhard, T., Regnier, L.: Uniformity and the taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci. 403(2-3), 347–372 (2008)

17. Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In:
20th IEEE Symposium on Logic in Computer Science (LICS 2005). pp. 376–385
(2005)

18. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. Ann.
Pure Appl. Logic 151(2-3), 89–114 (2008)

19. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and
polarised proof-nets. Theor. Comput. Sci. 411(22-24), 2223–2238 (2010)

20. Hyland, J.M.E., Ong, C.-H.L.: Pi-calculus, dialogue games and PCF. In: Proceed-
ings of the seventh international conference on Functional programming languages
and computer architecture, FPCA 1995. pp. 96–107 (1995)

21. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

22. Jagadeesan, L.J., Jagadeesan, R.: Causality and true concurrency: A data-flow
analysis of the pi-calculus (extended abstract). In: Algebraic Methodology and
Software Technology, 4th International Conference, AMAST ’95. pp. 277–291
(1995)

23. Laird, J.: A game semantics of idealized CSP. Electr. Notes Theor. Comput. Sci.
45, 232–257 (2001)

24. Laird, J.: A game semantics of the asynchronous π-calculus. In: CONCUR 2005 -
Concurrency Theory, 16th International Conference. pp. 51–65 (2005)

25. Levy, P.B.: Morphisms between plays. lecture Slides, GaLoP (2013)
26. Melliès, P.-A.: Asynchronous games 1: a group-theoretic formulation of uniformity.

Unpublished manuscript (2003)
27. Melliès, P.-A.: Asynchronous games 2: The true concurrency of innocence. Theor.

Comput. Sci. 358(2-3), 200–228 (2006)
28. Melliès, P.-A.: Game semantics in string diagrams. In: Proceedings of the 27th

Annual IEEE Symposium on Logic in Computer Science, LICS 2012. pp. 481–490
(2012)

29. Melliès, P.-A., Mimram, S.: Asynchronous games: Innocence without alternation.
In: CONCUR 2007 - Concurrency Theory, 18th International Conference, CON-
CUR 2007. pp. 395–411 (2007)

30. Melliès, P.-A., Mimram, S.: From asynchronous games to concurrent games. Un-
published manuscript (2008)

31. Murawski, A.S., Tzevelekos, N.: Nominal game semantics. Foundations and Trends
in Programming Languages 2(4), 191–269 (2016)

32. Nickau, H.: Hereditarily sequential functionals. In: Logical Foundations of Com-
puter Science, Third International Symposium, LFCS’94. pp. 253–264 (1994)

33. Power, J., Thielecke, H.: Closed Freyd- and kappa-categories. In: Automata, Lan-
guages and Programming, 26th International Colloquium, ICALP’99. pp. 625–634
(1999)

34. Rideau, S., Winskel, G.: Concurrent strategies. In: Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011. pp. 409–418 (2011)

35. Sangiorgi, D.: pi-calculus, internal mobility, and agent-passing calculi. Theor. Com-
put. Sci. 167(1&2), 235–274 (1996)

36. Tsukada, T., Ong, C.-H.L.: Nondeterminism in game semantics via sheaves. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015.
pp. 220–231 (2015)

37. Tsukada, T., Ong, C.-H.L.: Plays as resource terms via non-idempotent intersection
types. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New
York, NY, USA, July 5-8, 2016. pp. 237–246. ACM (2016)

38. Varacca, D., Yoshida, N.: Typed event structures and the linear pi-calculus. Theor.
Comput. Sci. 411(19), 1949–1973 (2010)

Γ, x̄ : T, ȳ : T ` P ;Σ

Γ, z̄ : T ` P{z̄/x̄, z̄/ȳ};Σ
Γ ` P ;Σ, x : T, y : T

Γ ` P{z/x, z/y};Σ, z : T

Γ, x̄ : S, ȳ : T, Γ ′ ` P ;Σ

Γ, ȳ : T, x̄ : S, Γ ′ ` P ;Σ

Γ ` P ;Σ, x : S, y : T,Σ′

Γ ` P ;Σ, y : T, x : S,Σ′

Γ ` 0;Σ

Γ ` P ;Σ Γ ′ ` Q;Σ′

Γ, Γ ′ ` P |Q;Σ,Σ′

Γ, x̄ : ch[S,T], ȳ : S ` x̄〈ȳ, z〉;Σ,z : T

Γ, ȳ : S ` P ;Σ,z : T

Γ ` x(ȳ, z).P ;Σ, x : ch[S,T]

Γ, ȳ : S ` P ;Σ,z : T

Γ ` !x(ȳ, z).P ;Σ, x : ch[S,T]

Γ, x̄ : T ` P ;Σ, y : T

Γ ` ν(x̄, y).P ;Σ

Fig. 10: The complete list of typing rules.

A Supplementary Material for Section 2

Structural congruence The structural congruence is the least congruence
relation that subsumes the α-equivalence and the following rules:

P |Q ≡ Q|P 0|P ≡ P (P |Q)|R ≡ P |(Q|R) !P ≡ P |!P
ν(x̄1, y1).ν(x̄2, y2).P ≡ ν(x̄2, y2).ν(x̄1, y1).P (ν(z̄, w).P)|Q ≡ ν(z̄, w).(P |Q)

where x̄1 6= x̄2, y1 6= y2 and z̄, w /∈ fn(Q).

Reduction relation The one-step reduction relation −→ on processes is defined
by the following rule:

ν(z̄,w).ν(x̄, y).(y(ā, b).P | x̄〈c̄,d〉 | Q) −→ ν(z̄,w).ν(x̄, y).(P{c̄/ā,d/b} | Q)

It should be noted that the communication only occurs over names that are
bound by ν. We define the reduction relation over processes as the reflexive
transitive closure of (−→∪≡).

Complete list of typing rules Because of the space limitation, we have omit-
ted some typing rules in the body of the paper. Figure 10 is the complete list of
typing rules.

B Supplementary Materials on the Category P
(Sections 3.1, 3.2 and 3.3)

B.1 Notations

We denote MO
A for the set of O-moves {m ∈ MA | λA(m) = O} and MP

A for
the set of P-moves {m ∈ MA | λA(m) = P}. We write IA for the set of initial

moves in an arena A. Give an arena A = (MA, λA,`A) the negation of A is
defined by A⊥ := (MA, λ

⊥
A,`A).

B.2 Isomorphism of justified graphs

In the body of the paper, we wrote that justified graphs are identified up to
isomorphism, but did not give the definition of the isomorphism between justified
graphs. The following is the definition.

Definition 15. Let s = (Vs, ls,ys , s) and t = (Vt, lt,yt , t) be justified graphs
over (A,B). We say that s and t are isomorphic if there exists a bijection ϕ :
Vs → Vt that preserves and reflects all the structures (i.e. ls(v) = lt(ϕ(v)),
v ys v′ ⇔ ϕ(v) yt ϕ(v′) and v s v′ ⇔ ϕ(v) t ϕ(v′)).

B.3 Justified graphs over tuples of arenas

In the body of the paper, we have introduced justified graphs and plays over a
pair of arenas, as well as justified and interaction graphs over a triple of arenas.
We generalise these notions to a tuple of arenas (of length greater than 1).

Definition 16 (Tuple of arenas). Let A = (A1, . . . , An) be an tuple of arenas.
The setMA of moves of A is defined byMA =MA1 +· · ·+MAn . The enabling
relation `A is defined by: m `A m′ if m `A m′ for some A ∈ {A1, . . . , An}. The
ownership function is defined by λA = [λA1 , . . . , λAn].

The definition of justified graphs is the straightforward extension of that over
a pair (or a triple) of arenas.

Definition 17 (Justified graph). A justified graph ofA is a tuple s = (Vs, ls,ys , s)
where

– Vs is a finite set called the vertex set
– ls is the vertex labelling, that is ls : Vs →MA

– ys ⊆ Vs × Vs is a justification relation
– s ⊆ Vs × Vs is a causality relation

such that

– (Vs, ys ∪ s) is a DAG i.e. there is no cycle v (s ∪ys)+ v.
– If ls(v) is initial, then there is no node v′ such that v ys v′.
– If ls(v) is not initial, then there exists a unique node v′ such that v ys v′.

Furthermore this v′ satisfies ls(v
′) `A ls(v).

We write JA for the set of justified graphs over A.

We define �s := (ys ∪ s).
Given a tuple A = (A1, . . . , An) of arenas, its subsequence is of the form

(Ai1 , Ai2 , . . . , Aik) where 0 ≤ i1 < i2 < · · · < ik ≤ n is a strictly increasing

sequence of indexes. We write A \ B for the subsequence of A consisting of
arenas not in B (e.g. (A,B,C,D) \ (B,D) = (A,C)).

Let A be a tuple of arenas, B be a subsequence of A and u = (V, l,y,)
be a justified graph over A. Then we define:

VB := {v ∈ V | l(v) ∈MB}
V OAi := {v ∈ V | l(v) ∈MO

Ai}
V PAi := {v ∈ V | l(v) ∈MP

Ai}
V OAi,Aj := {v ∈ V | l(v) ∈MP

Ai +MO
Aj}

V PAi,Aj := {v ∈ V | l(v) ∈MO
Ai +MP

Aj},

where i < j. For v, v′ ∈ V and W ⊆ V with v 6= v′, we write v W ∗ v′ if
there exists a sequence

v = v0 v1 . . . v`−1 v` = v′

such that vi ∈W for every i ∈ {1, 2, . . . , `− 1}. Note that v W ∗ v′ implies
v + v′.

We also generalise the notion of prefix.

Definition 18 (Induced subgraph). Given a justified graph s = (Vs, ls,ys
, s) and W ⊆ Vs, we write s[W] = (W, l,y,) for the labelled subgraph of s
induced by W i.e.

l(v) := ls(v) y := (ys) ∩ (W ×W) := (s) ∩ (W ×W)

The subgraph s[W] of s is also a justified graph.

Definition 19 (Restriction). Let A = (A1, . . . , An) be a tuple of arenas and
B = (B1, . . . Bk) be a subsequence of A. We assume that k ≥ 2. Let u =
(V, l,y,) be an justified graph over A. The restriction u�B of u to B is
defined as follows:

u�B := (V �B, l�B, y�B, �B)

where

– V �B := {v ∈ V | l(v) ∈MB},
– l�B(v) := l(v) for all v ∈ V �B,

– y�B := {(v, v′) ∈ (V �B)× (V �B) | v y v′} and

– �B := {(v, v′) | ∃i. (v, v′) ∈ V PBi,Bi+1 × V OBi,Bi+1 , v V ∗A\B v′}.

Definition 20 (Switching condition). Let u = (V, l,y,) be a justified
graph over A = (A1, . . . , An). It satisfies the switching condition if:

If v v′, then (v, v′) ∈ V PAi,Ai+1 × V OAi,Ai+1 for some i ∈ {1, . . . , n− 1}.

Lemma 4. Let u be a justified graph over A and B be a subsequence of A.
Assume that u satisfies the switching condition (Definition 20). Let (v, v′) ∈
V PBi,Bi+1 × V OBi,Bi+1 be a pair of P- and O-nodes in u�B. Assume that Bi = Aj

and Bi+1 = Ak. Then v
B
v′ in u�B if and only if there exists a sequence

v = v0 u v1 u v2 u . . . u v` u v`+1 = v′

in u where v1, v2, . . . , v` ∈ VAj+1,Aj+2,...,Ak−1 .

Corollary 1. Let u be a justified graph over A. Assume that u satisfies the
switching condition (Definition 20). Then for every (v, v′) ∈ V PAi,Ai+1×V OAi,Ai+1 ,

we have v
Ai,Ai+1 v

′ in u�Ai,Ai+1 if and only if v u v′ in u.

The next lemma shows that the composition of restrictions is again a restric-
tion (provided that the justified graph satisfies the switching condition).

Lemma 5. Let A be a tuple of arenas, B be a subsequence of A and C be
a subsequence of B. For every u ∈ JA that satisfies the switching condition
(Definition 20), we have

(u�B)�C = u�C .

Proof. Let u = (V, l,y,). Trivially we have

(V �B)�C = V �C
(l�B)�C = l�C

(y�B)�C = y�C .

It suffices to show that (�B)�C = �C . Let us write
BC

for the left-hand-side
and

C
for the right-hand-side of the desired equation. We define

B
:= �B.

Let (v, v′) ∈ V PCi,Ci+1 × V OCi,Ci+1 for some i.

We first show that v
BC

v′ implies v
C
v′. Assume that v

BC
v′. By definition,

v
B
v1 B v2 B . . .

B
v` B v′

for some ` ≥ 0 and v1, . . . , vl ∈ VB\C . By the definition of
B

, we have

v V ∗A\B v1 V ∗A\B v2 V ∗A\B . . . V ∗A\B v` V ∗A\B v′.

Since VA\B ⊆ VA\C and {v1, . . . , v`} ⊆ VB\C ⊆ VA\C , we have

v V ∗A\C v′,

which means that v
C
v′.

Then we show that v
C
v′ implies v

BC
v′. Assume that v

C
v′. Then

v v1 v2 . . . v` v′

for some ` ≥ 0 and v1, . . . , v` ∈ VA\C . Recall that VA\C = VA\B] VB\C . Let
vj1 , vj2 , . . . , vjk be the substring of v1, . . . , v` consisting of nodes in VB\C (k ≥ 0).
Then

v V ∗A\B vj1 V ∗A\B vj2 V ∗A\B . . . V ∗A\B vjk V ∗A\B v′.

So, if

(v, vj1) ∈ V PBc1 ,Bc1+1 × V OBc1 ,Bc1+1

(vj1 , vj2) ∈ V PBc2 ,Bc2+1 × V OBc2 ,Bc2+1

...

(vjk−1
, vjk) ∈ V PBck ,Bck+1 × V OBck ,Bck+1

(vjk , v
′) ∈ V P

Bck+1 ,Bck+1+1 × V OBck+1 ,Bck+1+1

for some c1, . . . , ck+1, we have

v
B
vj1 B vj2 B . . .

B
vjk B v′

which means v
BC

v′ since vj1 , . . . , jjk ∈ VB\C .
Now what remains is to prove the above assumption. Here we use the switch-

ing condition. We prove the following claim:

Recall that B is a subsequence of A. Hence, for every p, we have q and r
such that Bp = Aq and Bp+1 = Ar. Let w ∈ V and w′ ∈ VB and assume
that w 6= w′. If w V ∗A\B w′ and w ∈ V OAq]VAq+1]· · ·]VAr−1]V PAr ,

then w′ ∈ V OBj ,Bj+1 . In particular, if w ∈ V PBp,Bp+1 and w V ∗A\B w′

for some w′ ∈ VB, then w′ ∈ V OBj ,Bj+1 .

This is proved by an easy induction on the length of w V ∗A\B w′, using

the switching condition of u. Recall that (v, v′) ∈ V PCi,Ci+1 × V OCi,Ci+1 . Since C

is a subsequence of B, we have Ci = Bd and Ci+1 = Be for some d < e. The
switching condition of u and the fact that v1, . . . , v` /∈ VC implies v1, . . . , v` ∈
VBj+1,...,Bk−1 . In particular, for every d ∈ {1, . . . , `}, there exists p such that
vd ∈ V PBp,Bp+1 . Hence we have

(v, vj1) ∈ V PBc1 ,Bc1+1 × V OBc1 ,Bc1+1

(vj1 , vj2) ∈ V PBc2 ,Bc2+1 × V OBc2 ,Bc2+1

...

(vjk−1
, vjk) ∈ V PBck ,Bck+1 × V OBck ,Bck+1

(vjk , v
′) ∈ V P

Bck+1 ,Bck+1+1 × V OBck+1 ,Bck+1+1

as required. ut

Definition 21 (Interaction graph). Let A = (A1, . . . , An) be a tuple of are-
nas. A justified graph u = (V, l,y,) ∈ JA is an interaction graph if it satisfies
the following conditions.

(I1) If v v′, then (v, v′) ∈ V PAi,Ai+1 × V OAi,Ai+1 for some i ∈ {1, . . . , n − 1}.
(The switching condition, Definition 20.)

(I2) u�Ai,Ai+1 is a play for every i ∈ {1, . . . , n− 1}.

Condition (I1) is called the switching condition. We write Int(A) for the set of
interaction graphs over A.

The above notion of interaction graphs is a generalisation of the notions of plays
(Definition 4) and interaction graphs (Definition 9). In fact Int(A,B) = PA,B
and Int(A,B,C) in Definition 9 coincides with that of Definition 21.

Lemma 6. Let A = (A1, . . . , An) be a tuple of arenas and B be a subsequence
of A of length greater than 1. If u ∈ Int(A), then u�B ∈ Int(B). Especially, if
B is a pair then u�B is a play.

Proof. u�B satisfies the switching condition by definition. Thanks to Lemma 5,
it suffices to show the case where B = (Ai, Aj) with i < j. For general case, we
have (u�B)�B`,B`+1 = u�B`,B`+1 = u�Ai,Aj ∈ PAi,Aj for appropriate i and j.

Let u = (V, l,y,) be a justified graph over A and B = (Ai, Aj) (i < j) be
a subsequence of A. Let u�B = (VB, lB,yB , B) be the restriction of u to B. We
prove that u�B satisfies (P1), (P2) and (P3).

Condition (P1) follows from the definition of the restriction.

We prove Condition (P2). Let v ∈ V PB and v′ ∈ V OB and assume that v �
B

+ v′,
i.e.,

v = v0 �B v1 �B v2 �B . . . �
B
v` �B v`+1 = v′.

We prove that v
B
v′ by induction on the length of the above sequence.

– Case v
B
v′: This is the claim itself.

– Case v y
B
v′: Since v ∈ V PB , there are two cases (recall that B = (Ai, Aj)).

• v ∈ V OAi : Then v ∈ V PAi,Ai+1 . Since v′ ∈ V OB and v y
B

v′, we have

v′ ∈ V PAi (recall that a justification pointer connects only moves in the
same arena) and thus v′ ∈ V OAi,Ai+1 . Because u is an interaction graph,

we have u�Ai,Ai+1 ∈ PAi,Ai+1 . By Condition (P2) for u�Ai,Ai+1 , we have
v
Ai,Ai+1 v

′ in u�Ai,Ai+1 . Then, by Corollary 1, we have v v′ in u.

Hence v
B
v′.

• v ∈ V PAj : Then v ∈ V PAj−1,Aj and v′ ∈ V OAj−1,Aj . By the same argument as

above, we have v
Aj−1,Aj v

′ in u�Aj−1,Aj . Then, by Corollary 1, we have

v v′ in u. Hence v
B
v′.

– Case v
B
v1 �B

+ v′: Then v1 ∈ V OB and thus the edge v1 �B v2 is a justifica-
tion pointer v1 y

B
v2. There are two cases.

• Case v2 ∈ V OB : Since v
B
v1 y

B
v2, we have

v w1 . . . wk v1 y v2

in u, where w1, . . . , wk ∈ VA\B. Let

C =

{
(Ai, Ai+1) (if v2 ∈ VAi)

(Aj−1, Aj) (if v2 ∈ VAj).

By the switching condition, (wk, v1) ∈ V PC × V OC . We have wk C v1 in
u�C . Furthermore, because a justification pointer connects moves in the
same component, we have v2 ∈ VC . So

wk C v1 y
C
v2

in u�C . Then we have wk C v2 because of Condition (P2) for u�C ,
which is a play by the assumption that u is an interaction graph. By
Corollary 1, we have wk v2 in u and thus

v w1 . . . wk v2,

which means that v
B
v2 since w1, . . . , wk ∈ VA\B. Now we have

v = v0 �B v2 �B v3 �B . . . �
B
v` �B v`+1 = v′.

Since the length of this sequence is smaller than the original sequence,
by the induction hypothesis, we have v

B
v′.

• Case v2 ∈ V PB : Then v2 6= v′ since v′ ∈ V OB . By the induction hypothesis,
we have v2 B v′. Hence

v w1 . . . wk v1 y v2 z1 . . . zm v′

where w1, . . . , wk, z1, . . . , zm ∈ VA\B. Let

C =

{
(Ai, Ai+1) (if v2 ∈ VAi)

(Aj−1, Aj) (if v2 ∈ VAj).

By the switching condition, (wk, v1) ∈ V PC × V OC . Furthermore, because
a justification pointer connects moves in the same component, we have
v2 ∈ V PC (here the polarity comes from the assumption that v2 ∈ V PB)
and (v2, z1) ∈ V PC × V OC . Then we have

wk C v1 y
C
v2 C z1

in u�C , which is a play since u is an interaction graph. By Condition
(P2) for u�C , we have wk C z1. By Corollary 1, we have wk z1 in u.
Hence we have

v w1 . . . wk z1 . . . zm v′

which implies v
B
v′ since w1, . . . , wk, z1, . . . , zm ∈ VA\B.

– Case v y
B
v1 �

B
+ v′: If v1 ∈ V OB , then the edge v1 �

B
v2 is a justification

pointer v1 �B v2. By iterating this argument, we have either

v y
B
v1 y

B
. . .y

B
vk �B

+ v′

for some vk ∈ V PB or

v y
B
v1 y

B
. . .y

B
v′.

Let

C =

{
(Ai, Ai+1) (if v ∈ VAi)

(Aj−1, Aj) (if v ∈ VAj).

• Case v y
B

v1 y
B

. . . y
B

vk �
B

+ v′ with vk ∈ V PB : By the induction
hypothesis, we have vk B v′ in u�B. Hence we have

v y v1 y . . .y vk w1 w2 . . . wm v′

where w1, . . . , wm ∈ VA\B. Since a justification pointer connects moves
in the same component, we have v, v1, . . . , vk ∈ VC . Since vk ∈ V PB , we
have vk ∈ V PC . Hence (vk, w1) ∈ V PC × V OC by the switching condition.
Now we have

v y
C
v1 y

C
. . .y

C
vk C w1

in u�C , which is a play since u is an interaction graph. Condition (P2)
for u�C implies v

C
w1. By Corollary 1, we have v w1 in u. Hence

v w1 w2 . . . wm v′

which implies v
B
v′ since w1, . . . , wm ∈ VA\B.

• Case v y
B
v1 y

B
. . .y

B
v′: Then by the definition of the restriction,

v y v1 y . . .y v′

in u. Then v, v1, . . . , v`, v
′ ∈ VC since a justification pointer connects

moves in the same component. Thus

v y
C
v1 y

C
. . .y

C
v′

in u�C , which is a play. Since (v, v′) ∈ V PC ×V OC , Condition (P2) implies
v

C
v′. By Corollary 1, we have v v′ in u. Hence v

B
v′ in u�B.

We prove Condition (P3). Let C = (Ai, Ai+1, . . . , Aj−1, Aj). Since u�Ak,Ak+1

is a play for every k ∈ {i, i+ 1, . . . , j − 1}, we have the following claim:

For every node w ∈ VC except for w ∈ V PB , there exists a node w′ ∈
(VC \ V OB) such that w′ w in u.

To prove this claim, we use Condition (P3) for u�Ak,Ak+1 , the switching condition
of u, and Corollary 1. Given v ∈ V OB , consider a family of sequences of the form

wn wn−1 . . . w1 v

where w1, . . . , wn ∈ (VC \ V OB). Since an interaction graph has only finitely
many nodes and it is acyclic, there exists a maximal chain, in which ¬∃wn+1 ∈
(VC \ V OB). wn+1 wn. By the above claim, we have wn ∈ V PB , in particular
{w1, . . . , wn} contains at least one V PB node. Hence there exists k ≤ n such that
wk ∈ V PB and {w1, . . . , wk−1} ⊆ ((VC \ V OB) \ V PB) = (VC \ VB). So we have a
sequence

wk wk−1 . . . w1 v

such that (wk, v) ∈ V PB ×V OB and wk−1, . . . , w1 ∈ VC\B ⊆ VA\B. Hence wk B v
in u�B. ut

B.4 Proof of Theorem 1

Proposition 1. τ◦σ is a strategy for every strategies σ : A→ B and τ : B → C.

Proof. We show that τ ◦ σ is prefixed closed (Condition (S1) in Definition 6).
Let s ∈ (τ ◦ σ) and s′ v s. By the definition of the composition, there exists an
interaction graph u ∈ Int(A,B,C) such that

1. u�A,B ∈ σ,
2. u�B,C ∈ τ , and
3. u�A,C = s.

Let u = (V, l,y,). By the definition of s′ v s, we have a subset Ws ⊆ Vs of
nodes of s such that s′ = s[Ws] (see Definition 5). Recall that Vs ⊆ V by the
definition of u�A,C . Let W ⊆ Vu be the subset of nodes of u defined by

W := {v ∈ V | ∃v′ ∈Ws. v
′ �u ∗ v}.

Consider u[W] := (Wu, lW ,yW , W) (see Definition 18). Obviously it is a justi-
fied graph and satisfies the switching condition, since u does. It is also not difficult
to see that W ∩VA,B and W ∩VB,C satisfy the requirement in Definition 5 with
respect to u�A,B and u�B,C , respectively (Condition (2) in Definition 5 follows
from that for Ws with respect to s and the switching condition of u). Hence
u[W] is an interaction graph.

Then we have
(u�A,B)[W ∩ VA,B] = (u[W])�A,B

and
(u�B,C)[W ∩ VB,C] = (u[W])�B,C .

This shows that (u[W])�A,B v u�A,B and (u[W])(�B,C) v u�B,C , and thus

1. (u[W])�A,B ∈ σ, and
2. (u[W])�B,C ∈ τ .

So (u[W])�A,C ∈ (τ ◦σ). It is not difficult to show that (u[W])�A,C = s[Ws]. ut

The associativity of the composition is shown using the zipping lemma.

Lemma 7. Given u ∈ Int(A,B,D) and v ∈ Int(B,C,D) such that u�B,D =
v�B,D, there exists w ∈ Int(A,B,C,D) such that w�A,B,D = u and w�B,C,D = v.
Similarly, if u ∈ Int(A,C,D) and v ∈ Int(A,B,C) such that u�A,C = v�A,C , then
there exists w ∈ Int(A,B,C,D) such that w�A,C,D = u and w�A,B,C = v.

Proof. We prove the former. The latter can be proved by the same way. The
idea is to “glue” the two interaction graphs together overlapping the moves in
MB,D.

Let u = (Vu, lu,yu , u) and w = (Vw, lw,yw , w) be interaction graphs over
(A,B,D) and (B,C,D). We can assume without loss of generality that Vu∩Vw =
Vu�B,C = Vw�B,C . We define z = (Vz, lz,yz , z) by

Vz := Vu ∪ Vw

lz(v) :=

{
lu(v) (if v ∈ Vu)

lw(v) (otherwise)

yz := (yu) ∪ (yw)

 z := {(v, v′) ∈ (Vu)PA,B × (Vu)OA,B | v u v′} ∪ (w).

Note that the causal relation in (B,D) component of u is not added to z since
it is obtained from the causal relation of w by hiding C. It is not difficult to see
that z satisfies the requirements. ut

Proposition 2. Let σ : A → B, τ : B → C and δ : C → D be strategies. We
have (δ ◦ τ) ◦ σ = δ ◦ (τ ◦ σ).

Proof. We show that (δ ◦ τ) ◦ σ ⊆ δ ◦ (τ ◦ σ). Similar arguments apply to the
opposite inclusion.

Let s ∈ (δ ◦ τ) ◦ σ and u be a witness of s, i.e. an interaction graph u ∈
Int(A,B,D) such that

– u�A,B ∈ σ,
– u�B,D ∈ (δ ◦ τ) and
– u�A,D = s.

Since u�B,D ∈ δ ◦ τ , there exists v a witness of u�B,D, i.e. an interaction graph
v ∈ Int(B,C,D) such that

– v�B,C ∈ τ ,
– v�C,D ∈ δ and
– v�B,D = u�B,D.

By Lemma 7, there exists w ∈ Int(A,B,C,D) such that w�A,B,D = u and
w�B,C,D = v.

We show that w�A,C,D is a witness of s as a member of δ ◦ (τ ◦ σ). Using
Lemma 5, we have

(w�A,C,D)�A,D = (w�A,B,D)�A,D
= u�A,D
= s

and

(w�A,C,D)�C,D = (w�B,C,D)�C,D
= v�C,D ∈ δ

Next we need to prove that (w�A,C,D)�A,C ∈ τ ◦σ, meaning that we have to find
a witness for (w�A,C,D)�A,C as a member of τ ◦ σ. We claim that w�A,B,C is the
witness of (w�A,C,D)�A,C . This is proved by

(w�A,C,D)�A,C = (w�A,B,D)�A,C
(w�A,B,C)�A,B = (w�A,B,D)�A,B

= u�A,B ∈ σ

and

(w�A,B,C)�B,C = (w�B,C,D)�B,C
= v�B,C ∈ τ

Thus s ∈ δ ◦ (τ ◦ σ).
Because s is arbitrary, we have (δ ◦ τ) ◦ σ ⊆ δ ◦ (τ ◦ σ). ut

B.5 On the copycat strategy

Here we give the formal definition of the copycat strategy that was illustrated
in Section 3.3.

Definition 22 (Copycat graph, copycat play). Let A be a negative arena.
We write (A1, A2) for the arena pair consisting of two copies of A, whose move
set is MA +MA = {(i,m) | i ∈ {1, 2}, m ∈ MA}. Given m ∈ MA1,A2 , we
define m by

(1,m0) := (2,m0) (2,m0) := (1,m0).

Let s = (V, l,y,) be a justified graph over (A1, A2) and V i := {v ∈ V |
∃m. ls(v) = (i,m)} be the set of nodes of the i-th component (i = 1, 2). We say
that s is a copycat graph if there exists a bijection v : V → V that satisfies the
following conditions:

– v ∈ V 1 implies v ∈ V 2, and v ∈ V 2 implies v ∈ V 1,
– l(v) = l(v) for every v ∈ V ,

– v1 y v2 iff v1 y v2, and
– v1 v2 iff (v1, v2) ∈ V P × V O and v1 = v2.

A copycat graph is not necessarily a play because of Condition (P2). Given a
copycat graph s, the corresponding copycat play is (V, l,y, ()∪{(v, v′) ∈ V P ×
V O | v �∗ v′}).

The notation v is used to represent the copy of v throughout this paper in
different contexts. For an arena pair (A1, A2), we write cc(s) to refer to the
copycat graph over (A1, A2) such that cc(s)�A2 = s.

We write CCA for the set of copycat graphs and idA for the set of copycat
plays. We call idA the copycat strategy.

Proposition 3. Let s = (V, l,y,) be a copycat play with the bijection · . Let
(v1, v2) ∈ V P × V O. Then v1 v2 if and only if v1 y∗ v2 or v1 y∗ v2.

Proof. By the definition of a copycat play, we have a copycat graph s0 =
(V, l,y, 0) such that v1 0 v2 if and only if (v1, v2) ∈ V P × V O and v1 = v2.

Assume that v1 y∗ v2. We have v2 ∈ V P since v2 ∈ V O. Hence we have
v2 0 v2 and thus v1 y∗ v2 0 v2. So, by definition, we have v1 v2.

Assume that v1 y∗ v2. By definition, we have v1 v2.
Assume that v1 v2. By the definition of , we have (v1, v2) ∈ V P × V O

and v1 �0
∗ v2, where (�0) = (y) ∪ (0). Let

v1 = w1 �0 w2 �0 . . . �0 wn−1 �0 wn = v2.

If this sequence has more than one causal edges, we rewrite a subsequence

wi 0 wi+1 y wi+2 y . . .y wj−2 y wj−1 0 wj

to
wi y wi+1 y . . .y wj−2 y wj .

This is possible because

– wi 0 wi+1 implies wi+1 = wi,
– wi y wi+2 implies wi = wi y wi+2,
– wk y wk+1 implies wk y wk+1, for every k ∈ {i+ 2, . . . , j − 3},
– wj−2 y wj−1 0 wj implies wj−1 = wj and wj−2 y wj = wj .

So we can assume without loss of generality that the sequence v1 �0
∗ v2 contains

at most one causal edge. If it has no causal edge, we have v1 y∗ v2. Otherwise,
we have

v1 = w1 y w2 y . . .y wi 0 wi+1 y wi+2 y . . .y wn = v2 ∈ V O.

Then we have

v1 = w1 y . . .y wi y wi+2 y wi+3 y . . .y wn 0 wn

because

– wi 0 wi+1 implies wi+1 = wi,
– wi y wi+2 implies wi = wi y wi+2,
– wk y wk+1 implies wk y wk+1 for every k ∈ {i+ 2, . . . , n− 1}, and
– wn 0 wn since wn ∈ V O.

So we have v1 y∗ v2. ut

Lemma 8. For every interaction graph u ∈ Int(A,B1, B2) (where we use su-
perscripts to distinguish different copies of B), if u�B1,B2 is a copycat play, then
u�A,B1 = u�A,B2 . Similarly, for every interaction graph u ∈ Int(A1, A2, B), if
u�A1,A2 is a copycat play, then u�A1,B = u�A2,B.

Proof. Let u = (V, l,y,) be an interaction graph over (A,B1, B2). Given a
B1-move m, we write m for the copy of m in the B2 component. Similarly m
for a B2-move m is the copy in B1 component.

Assume that u�B1,B2 is a copycat play. Then we have a bijection · : VB1,B2 →
VB1,B2 such that

– v ∈ VBi implies v ∈ VB3−i ,
– l(v) = l(v) for every v ∈ VB1,B2 ,
– v1 y v2 iff v1 y v2, for every v1, v2 ∈ VB1,B2 , and
– for every (v1, v2) ∈ V PB1,B2×V OB1,B2 , we have v1 v2 iff v1 y∗ v2 or v1 y∗ v2

(Proposition 3 and Corollary 1).

Let s1 = u�A,B1 and s2 = u�A,B2 . Assume that si = (Vi, li,yi , i) for i = 1, 2.
Let f : V1 → V2 be the function on nodes defined by

f(v) =

{
v (if v ∈ VA)

v (if v ∈ VB1).

Then f is a bijection and preserves moves (when we identify m ∈ MB1 with
m ∈MB2) and justification pointers.

We prove that v1 1 v2 if and only if f(v1) 2 f(v2).
Assume that v1 1 v2. By Corollary 1, we have v1 v2. There are four cases:

– (v1, v2) ∈ V OA ×V PA : Then f(v1) = v1 v2 = f(v2) and thus f(v1) 2 f(v2).
– (v1, v2) ∈ V OA × V OB1 : Then v2 ∈ V PB1,B2 . So f(v1) = v1 v2 v2 = f(v2)

and thus f(v1) 2 f(v2).
– (v1, v2) ∈ V PB1 × V PA : Then v1 ∈ V OB1,B2 . So f(v1) = v1 v1 v2 = f(v2)

and thus f(v1) 2 f(v2).
– (v1, v2) ∈ V PB1 × V OB1 : Then v1 ∈ V OB1,B2 and v2 ∈ V PB1,B2 . So f(v1) = v1
v1 v2 v2 = f(v2) and thus f(v1) 2 f(v2).

Assume that f(v1) 2 f(v2). This means that

f(v1) w1 . . . wn wn+1 = f(v2)

for some w1, . . . , wn ∈ VB1 . We prove the claim by induction on the length of
the sequence.

– Case v1 ∈ V OA : Then f(v1) = v1 and v1 w1. If w1 = f(v2), then v2 ∈ V PA
and v1 v2. Hence v1 1 v2. Otherwise we have w1 ∈ V OB1 , which implies
(w1, w2) ∈ V PB1,B2 × V OB1,B2 . Since w1 w2, we have two cases.

• Case w1 y∗ w2: Then w2 6= f(v2). So the sequence has the next el-
ement, i.e. w1 y∗ w2 w3 for some w3. Since w1 w2 w3 and
w1, w2, w3 ∈ VB1 , we have λ(w1) = λ(w3), i.e. w3 ∈ V OB1 . Hence v1 �1

∗ w3

and (v1, w3) ∈ V OA,B1 × V PA,B1 . Because s1 is a play, we have v1 1 w3.
By Corollary 1, we have v1 w3. Now we have

f(v1) = v1 w3 . . . wn wn+1 = f(v2).

Since this sequence is shorter than the original sequence, by the induction
hypothesis, we have v1 1 v2.
• Case w1 y∗ w2: Then w2 ∈ VB2 , which implies w2 = f(v2) (i.e. n = 1).

Hence w2 ∈ V OB2 and w2 ∈ V OB1 . Because v1 w1 y∗ w2 and s1 is a
play, we have v1 w2 = f(v2) as desired.

– Case v1 ∈ V PB1 : Then f(v1) = v1 and v1 w1. Since v1 ∈ V PB1 , we have
v1 ∈ V PB2 , and thus (v1, w1) ∈ V PB1,B2 × V OB1,B2

. We have two cases.

• Case v1 y∗ w1: Then w1 ∈ VB2 and thus w1 = f(v2). Since v1 y∗
w1 = f(v2) = v2, we have v1 y∗ v2. Since (v1, v2) ∈ V PB2 × V OB2 , we have
(v1, v2) ∈ V PB1×V OB2 and thus (v1, v2) ∈ V PA,B1×V OA,B1 . Since s1 is a play,
we have v1 1 v2.

• Case v1 y∗ w1: Then w1 ∈ V PB1 and thus w1 6= f(v2). So the sequence
has the next element, i.e. v1 w1 w2. By the switching condition,
w2 ∈ V OA,B1 .

∗ Case w2 ∈ V PA : Then w2 = f(v2) = v2. Since v1 y∗ w1 v2,
(v1, v2) ∈ V PA,B1 × V OA,B1 and s1 is a play, we have v1 1 v2.

∗ Case w2 ∈ V OB1 : Then the sequence has the next element and thus

v1 y∗ w1 w2 w3 ∈ V OB1,B2 .

· Case w2 y∗ w3: Then w3 ∈ V OB2 and thus w3 = f(v2), i.e. v2 =
w3. Then w3 ∈ V OB1 and we have v1 y∗ w1 w2 y∗ w3. Since
s1 is a play and (v1, w3) ∈ V PA,B1×V OA,B1 ,, we have v1 1 w3 = v2.
· Case w2 y∗ w3: In this case, we have

w3 w3 w4 . . . wn wn+1 = f(v2).

By the induction hypothesis, we have w3 1 v2. Then v1 y∗
w1 1 w2 y∗ w3 1 v2 and thus v1 1 v2 since s1 is a play.

σ ⊆ σ ◦ idA can be proved by the same way. ut

Lemma 9. Let σ : A→ B be a strategy. Then σ = idB ◦ σ = σ ◦ idA.

Proof. If s ∈ (idB ◦ σ), then we have an interaction graph u ∈ Int(A,B1, B2)
such that u�A,B1 ∈ σ, u�B1,B2 ∈ idB and u�A,C = s. By Lemma 8, s = u�A,B2 =
u�A,B1 ∈ σ.

Suppose s ∈ σ. Let sB be the graph obtained by removing all the causality
edge from s�B and let u′ = s] sB . The graph u′ is the graph obtained by
duplicating the B moves (with pointers) in s. Assume that u′ = (V, l,y,).
Suppose that moves from the arena B in s and s�B are relabeled to moves from
the arena B1 and arena B2, respectively. For v ∈ VB1,B2 , v denotes the copy of v
in the other component. The interaction graph u is defined by u = (V, l,y, ′),
where

 ′ := () ∪ {(v1, v2) ∈ V PB1,B2 × V OB1,B2 | v1 y∗ v2 or v1 y∗ v2}.

Then we have u �A,B1= s ∈ σ and u�B1,B2 = idB . So u�A,B2 ∈ (idB ◦ σ).
The equation σ = σ ◦ idA can be proved similarly. ut

C On the Distributive-Closed Freyd Structure
(Section 3.4)

C.1 Monoidal product

Let us redefine the monoidal product of morphisms because the definition written
in the body of the paper was informal and vague.

Definition 23 (Juxtaposition). Let (A,B) and (C,D) be arena pairs. Let
s = (Vs, ls,ys , s) be a justified graph over (A,B) and t = (Vt, lt,yt , t) be a
justified graph over (C,D). Then the juxtaposition of s and t is defined by

s] t := (Vs + Vt, ls + lt,ys + yt , s + t).

The juxtaposition of justified graphs over n-tuple of arenas (see Appendix B.3)
can be defined similarly.

Lemma 10. Let s and t be plays over an arena pair (A,B). Then s] t is a play
over (A,B).

Proof. easy. ut

Definition 24. Let σ ⊆ PA,B and τ ⊆ PC,D. The monoidal product of σ and τ ,
written σ � τ (⊆ PA�C,B�D), is defined as

{s] t | s ∈ σ, t ∈ τ}.

Note that the definition of σ � τ is defined using sets of plays that are not
necessarily strategies.

Lemma 11. Given strategies σ and τ , the monoidal product σ� τ is a strategy.

Proof. It suffices to show that σ�τ is prefix-closed. Let r ∈ σ�τ and r′ v r. By
definition, there exists s, s′ ∈ σ and t, t′ ∈ τ such that r = s] t and r′ = s′] t′.
Since r′ v r, we have s′ v s and t′ v t. It follows that r′ ∈ σ � τ by the
prefix-closedness of σ and τ .

Theorem 8. The operator � is a bifunctor from P × P → P. In other words,
idA � idB = idA�B and (τ1 � τ2) ◦ (σ1 � σ2) = (τ1 ◦ σ1) � (τ2 ◦ σ2) for all
σ1 : A1 → B1, σ2 : A2 → B2, τ1 : B1 → C1, and τ2 : B2 → C2.

Furhermore, category P equipped with the tensor product � and the unit
object I is a well-defined symmetric monoidal category.

Proof. First we show that � is a bifunctor. It is clear that idA � idB = idA�B .
Now we prove that � preserves compositions of morphisms. Let r be a play

in (τ1 � τ2) ◦ (σ1 � σ2) and u be the witness of r i.e. an interaction graph over
(A1 �A2, B1 �B2, C1 � C2) such that

1. u�A1�A2,B1�B2 ∈ σ1 � σ2,
2. u�B1�B2,C1�C2 ∈ τ1 � τ2 and
3. u�A1�A2,C1�C2 = r.

First we show that u = u1]u2 for some interaction graphs u1 ∈ Int(A1, B1, C1)
and u2 ∈ Int(A2, B2, C2). If u cannot be decomposed as u1] u2, it means that
there exist v ∈ VA1,B1,C1 and v′ ∈ VA2,B2,C2 such that v u v′ or v′ u v. Then
u�A1�A2,B1�B2 or u�B1�B2,C1�C2 cannot be decomposed as two disconnect plays
r1 and r2 satisfying r1 ∈ σ1, r2 ∈ σ2 or r1 ∈ τ1, r2 ∈ τ2, respectively. This con-
tradicts the fact that u�A1�A2,B1�B2 ∈ σ1�σ2 and u�B1�B2,C1�C2 ∈ τ1� τ2, so
u = u1] u2. It is easy to check that ui�Ai,Bi

∈ σi, ui�Bi,Ci
∈ τi for all i ∈ {1, 2}

and r = u1�A1,C1] u2�A2,C2 . Hence, r ∈ (τ1 ◦ σ1)� (τ2 ◦ σ2).
The converse inclusion can be easily shown. If r ∈ (τ1 ◦ σ1) � (τ2 ◦ σ2) then

r = r1] r2 such that r ∈ τ1 ◦ σ1 and r2 ∈ τ2 ◦ σ2. Let u1 and u2 be the
witnesses of r1 and r2, respectively. Then u1] u2 is the witness of r respect to
(τ1 � τ2) ◦ (σ1 � σ2) and thus r ∈ (τ1 � τ2) ◦ (σ1 � σ2).

We are left to check that (P,�,assoc,unit, symm) is a symmetrical monoidal
category, but natural transformations assocA,B,C , unitA and symmA,B are
given by the suitable copycat strategies. Notice that in each case the move set
of the domain arena is isomorphic to the move set of the codomain arena. ut

C.2 Category of well-opened strategies

First we formally redefine the strategy !σ.

Definition 25. Let s = (Vs, ls,ys , s) and t = (Vt, lt,yt , t) be justified graphs
over an arena pair (A,B). The juxtaposition of s and t is defined by,

s]′ t := (Vs + Vt, [ls, lt],ys + yt , s + t).

Whenever it is clear from context, we abuse notation and write s] t to rep-
resent s]′ t.

Definition 26. Given a set of plays σ ⊆ PA,B, we define !σ ⊆ PA,B by

!σ := {s1] · · ·] sn | n ≥ 0,∀i ≤ n. si ∈ σ}

where] is the relation defined in Definition 25.

Lemma 12. !σ is a strategy for every well-opened strategy σ.

Proof. Similar to Lemma 11. ut

Recall that the composition of well-opened strategies are defined by τ ◦Aσ :=
τ ◦ !σ. The fact that the τ ◦A σ is a well-opened strategy and ◦A is associative
(Lemma 1) is proved by using the following lemma (and the associativity of ◦).

Lemma 13. Let σ : A
•→ B and τ : B

•→ C be well-opened strategies. Then τ ◦ !σ
is a well-opened strategy and !(τ ◦ !σ) = !τ ◦ !σ.

Proof. To show the first claim, assume that there exists a play s ∈ τ ◦ !σ that
is not well-open and let u be the witness of s. We show the claim using the
fact that the initial O-moves (resp. initial P-moves) in s are inMC (resp.MA)
because A, B and C are all negative arenas. There are three cases to consider.

– Case where s has multiple initial O-moves:
Since s has multiple initial O-moves, u�B,C ∈ τ has multiple initial O-moves
but this contradicts to the fact that τ is well-opened.

– Case where there exist a P-node vP in s such that there is no v satisfying
v �s vP and there is no v′ such that v′ �u vP :
Since the label of vP is a initial P-move, vP is in u�A,B . It follows that there
is no v′′ such that v′′ u �A,B vP by the assumption that there is no v′ such
that v′ �u vP and this contradicts to the fact that σ is well-opened.

– Case where there exist a P-node vP in s such that there is no v satisfying
v �s vP and there exists a node v′ such that v′ �u vP :
By assumption the node v′ is a node such that v′ ∈ V OB . Since v′ is a P-node
in (A,B) then there exists v2 such that v′ �u �A,B v2

To show the second claim we start by showing !(τ ◦ !σ) ⊆ !τ ◦ !σ. Let r ∈
!(τ ◦ !σ) and suppose r = r1] · · ·] rn, where n ≥ 0 and for all i ∈ {1, . . . , n},
ri ∈ τ ◦ !σ. Let ui be the witness of ri and u′ = u1] · · ·] un. Then we have
u′�A,C = r, u′�A,B =

⊎n
i ui�A,B ∈ !σ and u′�B,C =

⊎n
i ui�B,C ∈ !τ . Therefore u′

is a witness of r with respect to !τ ◦ !σ and thus r ∈ !τ ◦ !σ.
Next we show !τ ◦ !σ ⊆ !(τ ◦ !σ). Let r ∈ !τ ◦ !σ and u be the witness of r. The

graph u can be decomposed as u = u1] · · ·] un, where ui ∈ Int(A,B,C) for all
i ∈ {1, . . . , n}; otherwise we violate the fact that u is the witness of r. Moreover,
for each i ∈ {1, . . . , n}, ui�A,B ∈ σ and ui�B,C ∈ τ . Note that ui �A,B or ui�B,C
may be an empty play. Each ui satisfies ui�A,C ∈ τ ◦ σ ⊆ τ ◦ !σ. Therefore,
r ∈ !(τ ◦ !σ). ut

Recall that the well-opened identity, i.e. the identity morphism of the category
A, is defined by idAA := idA ∩WA,A. The following lemma shows that idAA is the
well-defined identity over an arena A.

Lemma 14. If σ : A
•→ B is a well-opened strategy then

1. idAB ◦ !σ = σ and
2. !idAA = idA.

Therefore, idAB ◦A σ = σ = σ ◦A idAA.

Proof. First we show the first claim. The proof for σ ⊆ idAB ◦ !σ is similar to that
of Lemma 8. Notice that u�B1,B2 , where u is the constructed interaction graph,
is well-opened because σ is well-opened.

Next we show idAB ◦ !σ ⊆ σ. Let s ∈ idAB ◦ !σ and u be the witness of s. Then
by definition we have u�A,B1

= s1] · · ·] sn, where n ≥ 0 and si ∈ σ for all
i ∈ {1, . . . , n}. It suffices to show that n ≤ 1. Assume that n ≥ 2. Then there
exists more than one initial O-moves in u�A,B1

and because those initial moves
are also initial moves in (B1, B2) and because copycat graphs copy initial moves,
u�B1,B2 has more than one initial O-moves. This contradicts to the fact that idAB
is well-opened, so n ≤ 1 and u�A,B2

∈ σ.
The second claim is obvious. ut

Theorem 9. The category A whose objects are negative arenas and whose mor-
phisms are well-opened strategy is a well-defined category, with composition and
finite products given by ◦A and �, respectively.

Proof. The associative axiom and the identity axiom can be shown by Lemma 1
and Lemma 14.

Next we show that � is the cartesian product in A. The projections π1 : A�
B → A and π2 : A� B → B are the well-opened copycat strategies over A and
B, respectively. Given an negative arena C and well-opened strategies σ : C → A
and τ : C → B, the well-opened strategy defined by 〈σ, τ〉 := {s | s ∈ σ∨s ∈ τ}1
factors σ and τ through π1 and π2 respectively. ut

Theorem 10. The operator ! is an identity-on-objects strict symmetrical monoidal
functor from A to P. Therefore, (A,P, !) is a Freyd category.

Proof. The fact that ! is a functor is a consequence of 2. of Lemma 13 and 2. of
Lemma 14. We are left to check that !(σ � τ) = !σ � !τ , but this is clear by the
definition of � and !.

C.3 Closed Freyd category

Here we show that the Freyd category ! : A → P is closed. We define the functor
A ⇀ (−) and prove that it is the right adjoint of !(−)�A. See Figure 7 (in the
body of the paper) for the illustration of the functor A ⇀ (−)) and the bijection
between P(!B �A,C) and A(B,A ⇀ C).

Definition 27. Let A = (MA, λA,`A) and B = (MB , λB ,`B) be arenas. The
arena A ⇀ B := (MA⇀B , λA⇀B ,`A⇀B) is defined by:

MA⇀B :=MA +MB + {∗}
λA⇀B := [λ⊥A, λB , {(∗, O)}].

1 Strictly speaking, the moves in s needs to be relabelled as in the case of the monoidal
product.

The enabling relation `A⇀B is given by: ? ` ∗, ∗ ` m only if m ∈ IA ∪ IB and
if m `A m′ or m `B m′ for m 6= ?, then m `A⇀B m′.

Definition 28. Let A, B and C be negative arenas, s be a play over (B,C)
and t be a play over (A1, A2). Suppose s] t = (V, l,y,). Then we define
A ⇀ (−,−) : PB,C × PA⊥1 ,A⊥2 →WA⇀B,A⇀C by

A ⇀ (s, t) := (V ∪ {∗1, ∗2}, l ∪ {(∗1, n), (∗2,m)},y ∪y1 ∪y2, ∪ ′)

where,

– ∗1, ∗2 /∈ V .

– n ∈ IA⇀B and m ∈ IA⇀C .

– y1 := {(v, ∗1) | l(v) ∈ (IA1
∪ IB)} and y2 := {(v, ∗2) | l(v) ∈ (IA2

∪ IC)}.
– ′ := {(∗1, ∗2)} ∪ {(v, ∗2) | v ∈ V PB,C ∪ V PA⊥1 ,A⊥2 }.

Let σ : B → C. Then the morphism A ⇀ σ : A ⇀ B
•→ A ⇀ C is defined as

{A ⇀ (s, t) | s ∈ σ, t ∈ idA⊥}.

Theorem 11. Given a negative arena A, A ⇀ − is a functor from P to A.

Definition 29. Let A, B and C be negative arenas and s = (V, l,y,) be a
play over (A�B,C). Then we define up : PA�B,C →WA,B⇀C by

up(s) := (V ∪ {∗}, l ∪ {(∗,m)},y ∪y′, ∪ ′)

where

– ∗ /∈ V .

– m ∈ IB⇀C .

– y′ := {(v, ∗) | l(v) ∈ IB ∪ IC}.
– ′ := {(v, ∗) | v ∈ V PA,B⇀C}.

Let σ : A � B → C be a morphism in P. Then the morphism Λ(σ) : A →
B ⇀ C in A is defined as {up(s) | s ∈ σ}.

Note that up is bijective because plays must satisfy the condition (P2). The
function Λ, therefore, is a bijection.

Remark 4. Without Condition (P2) Λ would not be a bijection and this is the
reason for requiring Condition (P2) to plays.

Theorem 12. For all negative arena B, B ⇀ − : P → A is right adjoint to
!(−) � B : A → P i.e. Λ : P(!A � B,C) ∼= A(A,B ⇀ C) is an isomorphism
natural in A and C.

!A′ � B !A � B C
!σ � idB τ

σ

τA,B
τB,C

τA,C

(a) τ ◦ (!σ � idB)

∗
!A′ !A B C⇀

!σ Λ(τ)

σ
τA,B

τA,C

τB,C

(b) Λ(τ) ◦ !σ

Fig. 11: Supplementary figure for the proof of Theorem 12:
Λ(τ ◦ (!σ � idB)) = Λ(τ) ◦ !σ

!A � B C C ′
τ σ

τA,B

τA,C

τB,C
σ

(a) σ ◦ τ

∗ ∗
!A B C⇀ C ′B ⇀

!Λ(τ) B ⇀ σ

τA,B

τA,C

τB,C

σ

(b) (B ⇀ σ) ◦ !Λ(τ)

Fig. 12: Supplementary figure for the proof of Theorem 12:
Λ(σ ◦ τ) = (B ⇀ σ) ◦ !Λ(τ)

C.4 Distributive law

Here the definition of the family of morphisms %A, which was missing in the
body of the paper, and the diagram for the axiom %A must satisfy are given.

Definition 30. Let A, B and C be negative arenas. Let r ∈ PA⊥1 ,A⊥2 , t ∈ PB1,B2

and s ∈ PC1,C2 and suppose r] s] t = (V, l,y,). We define dist : PA⊥1 ,A⊥2 ×
PB1,B2 × PC1,C2 → P!(A⇀(B�C)),B�!(A⇀C) by

dist(r, s, t) := (V ∪{∗1, ∗2}, l∪{(∗1,m1), (∗2,m2)},y ∪y1 ∪y2, ∪ ′ ∪(∗1, ∗2))

where

– ∗1, ∗2 /∈ V .
– m1 ∈ I!(A⇀(B�C)) and m2 ∈ I!(A⇀C).
– y1 := {(v, ∗1) | l(v) ∈ IA1∪IB1∪IC1} and y2 := {(v, ∗2) | l(v) ∈ IA2∪IC2}.
– ′ := {(v, ∗2) | v ∈ V P

A⊥1 ,A
⊥
2
∪ V PB1,B2

∪ V PC1,C2
}.

The morphism %A,B,C : !(A ⇀ (B � C))→ B � !(A ⇀ C) in P is defined as
{dist(r, s, t) | r ∈ idA⊥ , s ∈ idB , t ∈ idC}.

Given a strategy σ, informally, the strategy %A,B,C◦σ is a set of plays obtained
by relabeling initial moves and removing the justification pointers from the initial
moves in B for each play in σ.

Theorem 13. The family of morphisms %A,B,C is a natural transformation
from !(A ⇀ (− � −)) : A → P to − � !(A ⇀ −) : A → P for each object
A.

The natural transformation %A,B,C satisfies the following diagrams:

!(A1 ⇀ (B1 � C1))�A2 B4 � C4

(B2 � !(A3 ⇀ C2))�A4 B3 � (!(A5 ⇀ C3)�A6)

appA,B�C

%A,B,C�idA
assocB,!(A⇀C),A

idB�appA,C

!(A1 ⇀ ((B1 � C1)�D1)) !(A5 ⇀ (B5 � (C5 �D5))) B4�!(A4 ⇀ (C4 �D4))

(B2 � C2)�!(A2 ⇀ D2) B3 � (C3�!(A3 ⇀ D3))

!(A⇀assocB,C,D)

%A,B�C,D

%A,B,C�D

idB�%A,C,D

assocB,C,!(A⇀D)

Here the subscripts are used to distinguish the arenas in different positions.
Therefore, the Freyd category ! : A → P is distributive-closed.

D Supplementary Materials for Section 3.5

D.1 Laird’s model

Here we briefly review the definition of the game model of Laird [24]. We call
plays (resp. strategies) in [24] interleaving plays (resp. interleaving strategies) in
order to distinguish these notions from ours. Let (A,B) be an arena pair. An
interleaving play over (A,B) is a sequence of moves equipped with justification
pointers. Formally it is a triple ŝ = (#ŝ, lŝ, ρŝ) of the length #ŝ of ŝ, a function
lŝ : {1, . . . ,#ŝ} → MA,B and a partial function ρŝ : {1, . . . ,#ŝ} → {1, . . . ,#ŝ}
subject to the following conditions: (1) ρŝ(i) < i if ρŝ(i) is defined, (2) the
pointer respects the enabling relation, i.e. lŝ(ρŝ(i)) `A,B lŝ(i) if ρŝ(i) is defined,
and (3) ρŝ(i) is undefined only if lŝ(i) is an initial move. As usual, we often
write an interleaving play ŝ as a sequence ŝ = m1m2 . . .mk of moves, leaving
the justification pointers implicit. A set σ̂ of interleaving plays is an interleaving
strategy if it is non-empty and satisfies the following conditions:

(L1) If ŝ′ is a prefix of ŝ ∈ σ̂, then ŝ′ ∈ σ̂.

(L2) If m is an O-move and ŝ1ŝ2 ∈ σ̂, then ŝ1mŝ2 ∈ σ̂.

(L3) If m is a P-move and ŝ1mm
′ŝ2 ∈ σ̂, then ŝ1m

′mŝ2 ∈ σ̂.

(L4) If m is an O-move and ŝ1m
′mŝ2 ∈ σ̂, then ŝ1mm

′ŝ2 ∈ σ̂.

As described in [24], negative arenas and interleaving strategies can be organised
into a distributive-closed Freyd category, which we write as PL.

D.2 Sequentialising DAG-based plays

From a given (concurrent) play s = (Vs, ls,ys , s), an interleaving play is ob-
tained by lining up nodes in Vs in such a way that if v1 �s v2, then v2 appears

before v1. A linearisation function is a bijection f : Vs
∼=→ {1, . . . ,#Vs} (where

#Vs is the number of nodes in Vs) such that v1 → v2 implies f(v1) > f(v2). Given
a linearisation function f , we obtain an interleaving play ŝf := (#Vs, l◦f−1, f(ys
)), where f(ys) is the partial function whose graph is {(f(v1), f(v2)) | v1, v2 ∈
Vs, v1 ys v2}. We define

|s| := {ŝf | f is a linearisation function of g}.

This operation is extended to sets of (concurrent) plays σ by

|σ| := cl(
⋃
{|s| | s ∈ σ}),

where cl(σ̂) is the closure of σ̂ by Condition (L2).2

Lemma 15. Let s and σ be a (concurrent) play and a set of (concurrent) plays
over (A,B), respectively. Then

1. |s| satisfies the conditions (L3) and (L4), and
2. If σ is a strategy of P, then |σ| is a strategy of PL.

D.3 Proof of Theorem 3

Given a (concurrent) strategy σ, we write |σ|0 for the set of sequential plays
defined by

|σ|0 :=
⋃
{|s| | s ∈ σ}.

So |σ| = cl(|σ|0). For every concurrent strategy σ, |σ|0 satisfies (L1), (L3) and
(L4) (but not necessarily (L2)).

Lemma 16. Let σ̂ : A → B and τ̂ : B → C be sets of sequential plays that
satisfies (L1), (L3) and (L4) (but not necessarily (L2)). Then cl(τ̂ ◦ σ̂) = cl(τ̂) ◦
cl(σ̂).

Proof. Since σ̂ ⊆ cl(σ̂), we have

τ̂ ◦ σ̂ ⊆ cl(τ̂) ◦ cl(σ̂).

Since cl is monotone, cl(σ̂) and cl(τ̂) are strategies and the composition strategies
is a strategy [24], we have

cl(τ̂ ◦ σ̂) ⊆ cl(cl(τ̂) ◦ cl(σ̂)) = cl(τ̂) ◦ cl(σ̂).

2 The operator cl is needed to fill an inessential gap between two representations of
strategies: strategies as sets of even-length plays and those as sets of plays that
satisfies the contingent completeness [21]. We use the former but Laird used the
latter.

Assume that ŝ ∈ cl(τ̂) ◦ cl(σ̂). Then we have an interaction sequence û such
that û�A,B ∈ cl(σ̂), û�B,C ∈ cl(τ̂) and û�A,C = ŝ. Since û�A,B ∈ cl(σ̂), we have
t̂1 ∈ σ̂ obtained by removing some O-moves from û�A,B . Similarly we have t̂2 ∈ τ̂
obtained by removing some O-moves from û�A,B . Let û0 be the subsequence of
û consisting of

– A-moves in t̂1,
– B-moves in both t̂1 and t̂2, and
– C-moves in t̂2.

In other words, û0 is obtained by removing moves that is removed from û�A,B to
obtain t̂1 or from û�B,C to obtain t̂2. Then û0�A,B is obtained by removing some
P-moves from t̂1 and û0�B,C is obtained by removing some P-moves from t̂2.
Hence, by (L1) and (L3), we have û0�A,B ∈ σ̂ and û0�B,C ∈ τ̂ . So û0�A,C ∈ τ̂ ◦ σ̂.
By construction, û0�A,C is obtained by removing O-moves from û�A,C , and thus
û�A,C ∈ cl(τ̂ ◦ σ̂). ut

Lemma 17. Let σ : A → B and τ : B → C be (concurrent) strategies. Then
|τ |0 ◦ |σ|0 = |τ ◦ σ|0.

Proof. Assume that ŝ ∈ |τ ◦ σ|0. Then we have s ∈ τ ◦ σ such that ŝ ∈ |s|. Let
u ∈ Int(A,B,C) be the interaction graph such that u�A,B ∈ σ, u�B,C ∈ τ and
u�A,C = s. Let V be the set of nodes of u. The sequential play ŝ introduces the
linear order on VA,C , which we write as �0. This linear order �0 is compatible
with �u ∗ in the sense that v �u ∗ v′ implies v �0 v

′ for every v, v′ ∈ VA,C . Since
�u ∗ is a partial order, one can extend �0 to a linear order on V . This linear order
determines an interaction sequence û such that û�A,B ∈ |σ|0 and û�B,C ∈ |τ |0.
Hence û�A,C ∈ |τ |0 ◦ |σ|0. Obviously û�A,C = ŝ.

Assume that ŝ ∈ |τ |0◦|σ|0. Then we have an interaction sequence û such that
û�A,B ∈ |σ|0, û�B,C ∈ |τ |0 and û�A,C = ŝ. So we have s1 ∈ σ and s2 ∈ τ such
that û�A,B ∈ |s1| and û�B,C ∈ |s2|. We can assume without loss of generality
that nodes in s1 and s2 are natural numbers indicating positions in û. Then
i �s1 j or i �s2 j implies i > j. We define an interaction graph u = (V, l,y,) as
follows.

– V = {1, 2, . . . , n} where n is the length of û.
– l(i) is the name of the move at the i-th position in û.
– i y j if and only if i-th move points to j-th move in û. Equivalently i y j

if and only if iys1 j or iys2 j.
– i j if and only if i s1 j or i s2 j.

Then u is indeed an interaction graph. (Acyclicity of u comes from the fact that
i �u j implies i > j.) It is easy to see that u�A,B = s1 and u�B,C = s2. Hence
u�A,C ∈ τ ◦ σ. Since ŝ ∈ |u�A,C |, we have ŝ ∈ cl(τ ◦ σ). ut

Proof of Theorem 3 |−| is a functor because of Lemmas 16 and 17. Obviously
|⊥| = ⊥. If σ 6= ⊥, then there exists a play s ∈ σ which has a P-move because
of (P3). Since |s| is nonempty and ŝ ∈ |s| contains a P-move, we have |σ| 6= ⊥.
Preservation of other structures are lengthy but routine.

E Supplementary Materials for Section 4

E.1 Complete definition of the interpretation

The complete definition of the interpretation of processes, which we have omitted
in the body of the paper, is given in Figure 13.

JΓ ` P{z/x, z/y};Σ, z : T K = (idJΣK � !∇JT K) ◦ JP K
JΓ, z̄ : T ` P{z̄/x̄, z̄/ȳ};ΣK = JP K ◦ (idJΓ K � !∆JT K)

JΓ ` P ;Σ, y : T, x : S,Σ′K = (idJΣK � symmJSK,JT K � idJΣ′K) ◦ JP K
JΓ, ȳ : T, x̄ : S, Γ ′ ` P ;ΣK = JP K ◦ (idJΓ K � symmJT K,JSK � idJΓ ′K)

JΓ ` 0;ΣK = ⊥JΓ K,JΣK

JΓ, Γ ′ ` P |Q;Σ,Σ′K = JP K� JQK
JΓ, x̄ : ch[S,T], ȳ : S ` x̄〈ȳ, z〉;Σ,z : T K = ⊥JΓ K,JΣK � appJSK,JT K

JΓ ` x(ȳ, z̄).P ;Σ, x : ch[S,T]K = (idJΣK � derJ(S,T)K) ◦ J!x(ȳ, z).P K
JΓ ` !x(ȳ, z).P ;Σ, x : ch[S,T]K = %JSK,JΣK,JT K ◦ !Λ(JP K)

JΓ ` ν(x̄, y).P ;ΣK = Tr
JT K
JΓ K,JΣK(JP K)

Fig. 13: Interpretation of processes. (Complete version.)

Additional properties to prove Theorem 5

In order to prove Theorem 5 Laird [24] has used some additional properties
except for the properties we can obtain from the distributive-closed Freyd cat-
egory. Here we write them out and check that our model satisfies the desiring
properties. (See [24] or Appendix E.2 for the actual proof.)

Remark 5. It does not mean that the following properties are the minimal re-
quirements to prove Theorem 5. Requiring the following properties is sufficient
to prove Theorem 5, however.

First the following order (or equality) between morphisms are used.

– For all σ, ⊥ ⊆ σ.

– derA ⊆ idA.

– For all i ∈ {1, 2}, πi ⊆ ∇, where πi is the projection of the product.

– idA ⊆ !∆A ◦ !∇A and idA = !∇A ◦ !∆A.

It is easy to check that our model also satisfies these properties.
To prove (2) of Theorem 5 we also use the following equation:

appA,B ◦ (derA � idB) = appA,B .

In our model (and in the interleaving model) this equation is shown using the fact
that der is the well-opened identity and app is the “almost copycat” strategy.

Finally to show that J!P K = JP |!P K we use the following equations:

(idA � symmB,A � idB); (!∇A�!∇B) =!∇A�B
(!∆A�!∆B); (idA � symmA,B � idB) =!∆A�B

This is shown by the fact that id, symm, ∆ and ∇ are defined using copycat
strategies.

E.2 Proof sketch of Theorem 5

In this section we sketch the proof for the (weak) soundness property with respect
to the reduction. The proofs are by rewriting the equations using the categorical
properties and the additional properties we mentioned in the previous section.
Especially the axioms for the trace operator is heavily used.

The following lemmas are used to prove the soundness.

Remark 6. In this section we use the diagrammatic order for composition; we
use ; and ;A for the composition in P and A respectively.

Lemma 18. (idA�symmB,A�idB); (!∇A�!∇B) =!∇A�B and (!∆A�!∆B); (idA�
symmA,B � idB) =!∆A,B.

Lemma 19. Given f ∈ A(A,B�C), we have !f =!∆A; ((!f ; (idB�derC))�!f); !∇B�C .

Proof.

!f = !(〈⊥A,B�C , f〉;A π2)

= !(∆A;A (⊥A,B�C � f);A π2)

= !∆A; (⊥A,B�C�!f); !π2

⊆ !∆A; ((!f ; (idB � derC))�!f); !π2 (∀f. ⊥ ⊆ f)

⊆ !∆A; ((!f ; (idB � derC))�!f); !∇B�C (π2 ⊆ π1 ∪ π2 = ∇)

⊆ !∆A; (!f�!f); !∇B�C (der ⊆ id)

= !(∆A;A (f � f);A∇B�C)

= !(〈f, f〉;A (π1 ∪ π2))

= !(f ∪ f)

= !f ut

First we show the soundness with respect to the structural congruence.

Lemma 20. If P ≡ Q then JΓ ` P ;ΣK = JΓ ` Q;ΣK (modulo assoc and
unit).

Proof. (Sketch.)

– Case where P |Q ≡ Q|P :

JΓ, Γ ′ ` Q|P ;Σ,Σ′K
= symmΓ,Γ ′ ; JΓ

′, Γ ` Q|P ;Σ′, ΣK; symmΣ′,Σ

= symmΓ,Γ ′ ; (JΓ ′ ` Q;Σ′K� JΓ ` P ;ΣK); symmΣ′,Σ

= (JΓ ` P ;ΣK� JΓ ′ ` Q;Σ′K); symmΣ,Σ′ ; symmΣ′,Σ

(naturality of symm)

= (JΓ ` P ;ΣK� JΓ ′ ` Q;Σ′K) (symm; symm = id)

= JΓ, Γ ′ ` P |Q;Σ,Σ′K.

– Case where 0|P ≡ P :
trivial.

– Case where P |(Q|R) ≡ (P |Q)|R:
trivial.

– Case where νx.νy.P ≡ νy.νx.Q:

JΓ, νx.νy.P ;ΣK

= TrTΓ,Σ(JΓ, x̄ : T ` νy.P ;Σ, x : T K)

= TrTΓ,Σ(TrSΓ�T,Σ�T (JΓ, x̄ : T, ȳ : S ` P ;Σ, x : T, y : SK))

= TrT�SΓ,Σ (JΓ, x̄ : T, ȳ : S ` P ;Σ, x : T, y : SK) (vanishing)

= TrT�SΓ,Σ ((idΓ � symmT,S); JΓ, ȳ : S, x̄ : T ` P ;Σ, y : S, x : T K(idΣ � symmS,T))

= TrS�TΓ,Σ ((idΓ � symmS,T); (idΓ � symmT,S); JΓ, ȳ : S, x̄ : T ` P ;Σ, y : S, x : T K)

= TrS�TΓ,Σ (JΓ, ȳ : S, x̄ : T ` P ;Σ, y : S, x : T K) (symm; symm = id)

= TrSΓ,Σ(TrTΓ�S,Σ�S(JΓ, ȳ : S, x̄ : T ` P ;Σ, y : S, x : T K)) (vanishing)

= JΓ, νy.νx.P ;ΣK

.
– Case where (νx.P)|Q ≡ νx.(P |Q):

JΓ, Γ ′ ` νx.(P |Q);Σ,Σ′K

= TrTΓ�Γ ′,Σ�Σ′(JΓ, Γ
′, x̄ : T ` P |Q;Σ,Σ′, x : T K)

= TrTΓ�Γ ′,Σ�Σ′ ; ((idΓ � symmΓ ′,T)JΓ, x̄ : T, Γ ′ ` P |Q;Σ, x : T,Σ′K;

(idΣ � symmT,Σ′))

= TrTΓ�Γ ′,Σ�Σ′((idΓ � symmΓ ′,T); (JΓ, x̄ : T ` P ;Σ, x : T K� JΓ ′ ` Q;Σ′K);

(idΣ � symmT,Σ′))

= TrTΓ,Σ(JΓ, x̄ : T ` P ;Σ, x : T K)� JΓ ′ ` Q;Σ′K
((generalized) superposing)

= JΓ, Γ ′ ` (νx.P)|Q;Σ,Σ′K

– Case where !P ≡ P |!P :

JΓ ` x(y, z).P |!x(y, z).P ;Σ, x : T K
= !∆Γ ; JΓ, Γ ` x(y, z).P |!x(y, z).P ;Σ, x : T,Σ, x : T K; !∇Σ�T

(Lemma 18)

= !∆Γ ; (JΓ ` x(y, z).P ;Σ, x : T K� JΓ `!x(y, z).P ;Σ, x : T K); !∇Σ�T
= !∆Γ ; ((JΓ `!x(y, z).P ;Σ, x : T K; (idΣ � der))� JΓ `!x(y, z).P ;Σ, x : T K); !∇Σ�T

(definition of J!P K)

= JΓ `!x(y, z).P ;Σ, x : T K (Lemma 19)

.
ut

Lemma 21. If P −→ Q then JP K ⊇ JQK.

Proof. (Sketch.) In order to show the soundness we first show the following:
JΓ ` νx.νy.P ;ΣK ⊆ JΓ ` νx.P [x/y, x̄/ȳ];ΣK, where x : T and y : T :

JΓ ` νx.νy.PΣK
= TrTΓ,Σ(TrTΓ�T,Σ�T (JΓ, x̄ : T, ȳ : T ` P ;Σ, x : T, y : T K))

= TrT�TΣ,Γ (JΓ, x̄ : T, ȳ : T ` P ;Σ, x : T, y : T K) (vanishing)

= TrT�TΣ,Γ ((idΣ � idB�B); JΓ, x̄ : T, ȳ : T ` P ;Σ, x : T, y : T K)

⊆ TrT�TΣ,Γ ((idΣ � (!∇; !∆)); JΓ, x̄ : T, ȳ : T ` P ;Σ, x : T, y : T K) (id ⊆!∇; !∆)

= TrTΣ,Γ ((idΓ�!∇T); JΓ, x̄ : T, ȳ : T ` P ;Σ, x : T, y : T K; (idΣ�!∆T))

(sliding)

= TrTΣ,Γ (JΓ, x̄ : T ` P [x/y, x̄/ȳ];Σ, x : T K)

= JΓ ` νx.P [x/y, x̄/ȳ];ΣK

Next we show that the following equation holds

(JP ′K :=)JΓ, ā : S ` νc.(c̄〈ā, b〉|c(ȳ, z).P);Σ, b : T K
= JΓ, ā : S ` P [b/z, ā/ȳ];Σ, b : T K

Here we assume that c /∈ fn(P).

JP ′K = TrS⇀T
Γ�S,Σ�T (JΓ, ā : S, c̄ : S ⇀ T ` c̄〈ā, b〉|c(ȳ, z).P ;Σ, b : T, c : S ⇀ T K)

= TrS⇀T
Γ�S,Σ�T ((symmΓ,S�S⇀T); (symmS,S⇀T � idΓ);

(Jā : S, c̄ : S ⇀ T ` c̄〈ā, b〉; b : T K� JΓ ` c(ȳ, z).P ;Σ, c : S ⇀ T K);
(symmT,Σ � idS⇀T))

= (JΓ ` c(ȳ, z).P ;Σ, c : S ⇀ T K� idS); (idΣ � Jā : S, c̄ : S ⇀ T ` c̄〈ā, b〉; b : T K)
= ((!Λ(JΓ, ȳ : S ` P ;Σ,z : T K); %S,Σ,T ; (idΣ � derS⇀T))� idS); (idΣ � appS,T)

(by a long but straightforward rewriting using the axioms of Tr and symm)

= (!Λ(JΓ, ȳ : S ` P ;Σ,z : T K)� idS); (%S,Σ,T � idS); (idΣ � appS,T)

((der � id); app = app)

= (!Λ(JΓ, ȳ : S ` P ;Σ,z : T K)� idS); appS,Σ�T (property of %)

= JΓ, ȳ : S ` P ;Σ,z : T K (universality of app)

= JΓ, ā : S ` P [b/z, ā/ȳ];Σ, b : T K

Thus we have

Jνx.(P [b/z, ā/ȳ]|Q)K = Jνx.νc.(c̄〈ā, b〉|c(ȳ, z).P |Q)K ⊆ Jνx.(x̄〈ā, b〉|x(ȳ, z).P |Q)K.

ut

E.3 Labelled transition semantics

We relate our game model with a labelled transition system where only bound
name is passed. This relation is used to show the correspondence between the in-
tersection type system and the behaviour of a relationally describable processes.
The proof is guided by Laird’s work on investigating the connection between
justified sequences and the labelled transition system [24].

The labelled transition system is defined as follows.

x(ȳ, z).P
x〈k̄,l〉−→ P [k̄/ȳ, l/z] x̄〈ȳ, z〉 x̄〈k,l̄〉−→ k→ ȳ|z → l̄

P
α−→ P ′

P |Q α−→ P ′|Q
P

α−→ P ′

ν(x̄, y).P
α−→ ν(x̄, y).P ′

P
α−→ Q P ≡ P ′

P ′
α−→ Q

P
x〈k̄,l〉−→ P ′ Q

x̄〈k,l̄〉−→ Q′

ν(x̄, x).(P |Q)
τ−→ ν(x̄, x).ν(k̄,k).ν(l̄, l).(P ′|Q′)

Actions are either in the form of τ , x〈k̄, l〉 and x̄〈k, l̄〉, each of them correspond-
ing to silent, input and output action, respectively. Each of the rules above is
equipped with an implicit side condition that P

α−→ P ′ only if subj(α) ∈ fn(P)
and (obj(α)∪obj(ᾱ))∩ fn(P) = ∅, where subj(α) and obj(α) is defined as the
subject name of α and the set of object names of α respectively.

The following lemma relates our semantics to the labelled transition system.
Here trace(P) is the τ -free trace of the process P and φ is a map from the set of
traces to the set of justified sequence. (See [24] for the definition.) We define σ
as the closure of (a set of interleaving plays) σ by Condition (L1) to (L4) that is
used to fill the gap between a trace of a process and a play in the interpretation
of the process.

Lemma 22. |JP K| = φ(trace(P)).

Proof. By Theorem 3 and the fact that JP KL = φ(trace(P)) [24], where JP KL
is the interpretation of P in the interleaving semantics. ut

F Supplementary Materials for Section 5

F.1 Time-forgetting map

The time-forgetting map forgets the sequential structure of a play. In this con-
text, it should forget the causality relation . We write J−A for the set of all
justified graphs without causality, i.e.,

J−A := {(V, l,y) | (V, l,y, ∅) ∈ JA}.

Definition 31 (Time-forgetting map). Given a play s = (V, l,y,) over
(A,B) and X ∈ {A,B}, we define FX(s) = (VX , lX ,yX) by

VX := {v ∈ V | l(v) ∈MX}
lX(v) := l(v)

y
X

:= (y) ∩ (VX × VX).

We define the same operation for an interaction graph. For a strategy σ : A→ B
in P, we define F(σ) := {(FA(s),FB(s)) | s ∈ σ}. So F(σ) ⊆ J−A × J

−
B is a

relation.

The time-forgetting map F is a lax functor (but not a functor).

Proposition 4. F(τ ◦ σ) ⊆ F(τ) ◦ F(σ), where the composition in the right-
hand-side is that of relations.

Proof. Assume that s ∈ τ ◦ σ. Then there exists an interaction graph u ∈
Int(A,B,C) such that u�A,B ∈ σ, u�B,C ∈ τ and u�A,C = s. It is not difficult to
see the following equation for X ∈ {(A,B), (B,C), (A,C)} and Y ∈ {A,B,C}
such that Y appears in X:

FY (u) = FY (u�X).

So we have (FA(u),FC(u)) ∈ F(τ) ◦ F(σ). By the above equation, we have
F(s) = (FA(u),FC(u)) as desired. ut

F.2 Relationally describable processes

A pair (s, t) of plays s ∈ PA,B and t ∈ PB,C is composable if RB(s) = RB(t). A
composable pair (s, t) induces a “justified graph” u = (V, l,y,) given by

V := Vs ∪ Vt

l(v) :=

{
ls(v) (if v ∈ Vs)
lt(v) (otherwise)

y := (ys) ∪ (yt)

 := (s) ∪ (t)

where we assume that Vs∩Vt = {v ∈ Vs | ls(v) ∈MB} = {v ∈ Vt | lt(v) ∈MB}.
It is not difficult to see that u satisfies all the requirements for an interaction
graph except for acyclicity. The composable pair (s, t) has a cycle if the induced
justified graph is cyclic. Otherwise it is cycle-free.

Let σ : A → B and τ : B → C be strategies. They are cycle-free if any
composable pair (s, t) ∈ σ × τ is cycle-free. In this case, we also say that the
composition of σ and τ is cycle-free.

For cycle-free compositions, the time-forgetting map F behaves like a functor.

Lemma 23. Let σ : A→ B and τ : B → C be strategies. If (σ, τ) is cycle-free,
then F(τ ◦ σ) = F(τ) ◦ F(σ).

Proof. Let x ∈ JA and z ∈ JC and assume (x, z) ∈ F(τ) ◦ F(σ). Then there
exists y ∈ JB such that (x, y) ∈ F(σ) and (y, z) ∈ F(τ). Hence there exists
s ∈ σ such that FA(s) = x and FB(s) = y. Similarly there exists t ∈ σ such that
FB(t) = y and FC(t) = z. So (s, t) is a composable pair. Since (σ, τ) is cycle-free,
the induced justified graph u is acyclic, and thus a (genuine) interaction graph.
Hence u�A,C ∈ (τ ◦ σ). So

(x, z) = (FA(s),FC(t)) = (FA(u),FC(u)) = (FA(u�A,C),FC(u�A,C)) ∈ F(τ◦σ).

The other direction is proved in Proposition 4. ut

A process P is relationally describable if all the compositions appearing in
the interpretation of P are cycle-free. If P is relationally describable, then one
do not need the causality relation to compute F(JP K).

Intersection type system The typing rules are listed in Figure 14.

A type ϕ (resp. an intersection type ξ) is a refinement of simple type S if
ϕ :: S (resp. ξ :: S) is derivable by the following rules:

ξ1 :: S1 . . . ξn :: Sn ζ1 :: T1 . . . ζk :: Tk
ch[ξ1 . . . ξn, ζ1 . . . ζk] :: ch[S1 . . . Sn, T1 . . . Tk]

∀i ≤ n. ϕi :: S

〈ϕ1, . . . , ϕn〉 :: S

The base case is the empty intersection type 〈〉 :: S for every S. A refinement
of an input type environment Σ = x1 : S1, . . . , xn : Sn, ranged over by Θ, is
of the form x1 : ξ1, . . . , xn : ξn with ξi :: Si for every i. We write Θ :: Σ if Θ
is a refinement of Σ. For an output type environment Γ , the relation Ξ :: Γ is
defined by a similarly way.

A derivation Ξ ` P ; Θ is a refinement of Γ ` P ; Σ if, for every type binding
x : ξ in Ξ ` P ; Θ, we have ξ :: T where T is the type for the name x in
Γ ` P ; Σ.

Lemma 24. Let Γ ` P ; Σ be a process and Ξ :: Γ and Θ :: Σ be refinements of
the type environments. If Ξ ` P ; Θ, then there exists a derivation of the same
judgement that is a refinement of Γ ` P ; Σ.

There are bijections between {ξ | ξ :: T} and J−JT K and between {Ξ | Ξ :: Γ}
and J−JΓ K. We write 〈|Ξ|〉 for the latter map.

The above intersection type system is related to the type-forgetting map as
follows.

Lemma 25. Let Γ ` P ;Σ be a relationally describable process. Then F(JΓ `
P ;ΣK) = {(〈|Ξ|〉, 〈|Θ|〉) | Ξ ` P ; Θ}, where Ξ ` P ; Θ in the right-hand-side of
the equation is restricted to refinements of Γ ` P ;Σ.

Proof. By induction on the structure of P . We use the fact that we can simply
ignore the causal relation since P is relationally describable. ut

Proof of Theorem 7 A consequence of Lemmas 22 and 25.

Ξ, x̄ : ξ, ȳ : ζ ` P ; Θ

Ξ, z̄ : ξ ∧ ζ ` P{z̄/x̄, z̄/ȳ}; Θ

Ξ ` P ; Θ, x : ξ, y : ζ

Ξ ` P{z/x, z/y}; Θ, z : ξ ∧ ζ

Ξ, x̄ : ξ, ȳ : ζ, Ξ ′ ` P ; Θ

Ξ, ȳ : ζ, x̄ : ξ, Ξ ′ ` P ; Θ

Ξ ` P ; Θ, x : ξ, y : ζ,Θ′

Ξ ` P ; Θ, y : ζ, x : ξ,Θ′

∅ ` 0; ∅

Ξ ` P ; Θ Ξ ′ ` P ′; Θ′

Ξ,Ξ ′ ` P |P ′; Θ,Θ′

x̄ : ch[ξ, ζ], ȳ : ξ ` ¯̄x〈ȳ, z〉; Θ,z : ζ

Ξ, ȳ : ξ ` x(ȳ, z).P ; Θ,z : ζ

Ξ ` x(ȳ, z).P ; Θ, x : ch[ξ, ζ]

∀i ≤ I. Ξi ` x(ȳ, z).P ; Θi∧
i∈I Ξi ` !x(ȳ, z).P ;

∧
i∈I Θi

Ξ, x̄ : ξ ` P ; Θ, y : ξ

Ξ ` ν(x̄, y).P ; Θ

Fig. 14: Typing rules for the intersection type system

