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Abstract. Model checking of recursion schemes, known as higher-order
model checking, has actively been studied recently and is becoming a
basis for verification of higher-order programs. Some practical model
checking algorithms have been developed based on the reduction from
model checking to intersection type inference, but they are not com-
pletely satisfactory. We propose a novel approach to developing model
checking algorithms, based on abstract interpretation of a rewriting sys-
tem on (incomplete) derivations in a “rigid” intersection type system. The
derivation rewriting can be regarded as a simple type inference process
that is sound and complete in a certain sense. However it is not practical
since the state space (i.e. the set of all incomplete derivations) is too
large. We construct an abstraction of the rewriting system, and develop
an algorithm based on the abstract model. We have implemented the
algorithm and confirmed that it outperforms previous model checkers in
certain cases.

1 Introduction

The model-checking of higher-order recursion schemes (called higher-order model
checking below) [6, 15], has been actively studied recently. A higher-order recur-
sion scheme (a recursion scheme, for short) is a grammar generating a possibly
infinite tree, and higher-order model checking is the problem to decide whether
the tree generated by a given recursion scheme satisfies a given property (ex-
pressed by a formula of the modal µ-calculus or a tree automaton). Since re-
cursion schemes can be regarded as simply-typed lambda terms with recursion
and tree constructors, they are natural models of higher-order programs. Higher-
order model checking has been applied to verification of higher-order programs [8,
11, 12, 16].

A significant challenge in applying higher-order model checking to program
verification is to develop an efficient model-checking algorithm that works in
practice. Despite the huge worst-case complexity of higher-order model check-
ing (k-EXPTIME complete for order-k recursion schemes [15]), several practi-
cal algorithms [7, 9, 13] have been developed, which work reasonably well for
typical inputs. Though TRecS [7], the first implementation of a higher-order
model checker, has been successfully used as the back-end of verification tools



for higher-order programs [11, 12], it has shown scalability only up to hundreds
of lines of recursion schemes. Since the worst-case complexity of the underlying
algorithm is hyper-exponential in the program size, it is unlikely that TRecS
scales to handle millions of lines of recursion schemes. To remedy the problem,
Kobayashi [9] proposed another algorithm (called GTRecS) that works in time
linear in the size of recursion schemes under certain assumptions. The algorithm
is, however, slower than TRecS in practice, except for some pathological cases.
Neatherway et al. [13] have recently proposed yet another algorithm, but like
TRecS, its worst-case behaviour is hyper-exponential in the size of recursion
schemes.

The goal of the present paper is to develop a higher-order model checking
algorithm that is linear time in the size of recursion schemes but runs much
faster than GTRecS [9]. For that purpose, we introduce a new approach based
on the notion of type derivation rewriting. Actually, all the previous algorithms
mentioned above can be viewed as intersection type inference algorithms for
higher-order recursive programs, and ours can be considered a new approach to
intersection type inference, where a type derivation tree is incrementally con-
structed by rewriting an incomplete derivation tree step by step. This rewriting
process is infinite in general, but by applying an abstraction, we can obtain an
over-approximation of the set of intersection types required for typing recursion
schemes. We can then apply a fixed-point algorithm [9] to obtain valid inter-
section types. Advantages of the approach are: (i) the algorithm runs in time
linear in the size of recursion schemes as in [9], (ii) the incremental construction
of derivation trees avoids duplicated computation in the process of intersection
type inference (which was one of the main sources of inefficiency of the previous
algorithm [9]), and (iii) we can obtain a family of model checking algorithms
with varying degrees of overapproximation and convergence speed, by modifying
the abstraction function. We have implemented a new model checker GTRecS2
based on the proposed approach, and confirmed by experiments that it outper-
forms a previous linear-time algorithm GTRecS [9], and also outperforms other
higher-order model checkers [7, 13] in certain cases.

2 Review of Higher-Order Model Checking

In this section, we review higher-order model checking and its connection to
intersection types [8].

We first define simple types with a unique base type o, called sorts in the
paper in order to avoid confusion with intersection types introduced later. The
set of sorts, ranged over by meta-variables A and B, are defined by: A,B ::= o |
A→ B. The order and arity of sort A is defined by:

order(o) = 0 order(A→ B) = max{1 + order(A), order(B)}
arity(o) = 0 arity(A→ B) = 1 + arity(B).

Assume a countably infinite set VarA of variables for each sort A. If x ∈ VarA, we
write xA and x :: A. The set TermA of applicative terms of sort A is inductively
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defined by: (1) xA ∈ TermA, (2) if M ∈ TermA→B and N ∈ TermA, then
M N ∈ TermB . We write MA and M :: A if M ∈ TermA. For a term M , the set
fv(M) of free variables of M is defined as usual. The order and arity of a term
are those of its sort.

Let Σ be a finite set of variables of order 0 or 1, called terminals. Although
terminals are defined as variables, they are treated as uninterpreted symbols or
constants in reduction semantics. Let ⊥o /∈ Σ be a distinguished variable, and
Σ⊥ beΣ∪{⊥}. Letm be the maximal arity of terminals. We write dom(f) for the
domain of f . A Σ⊥-labelled tree is a partial function T : {1, 2, . . . ,m}∗ ⇀ Σ⊥

(where X∗ is the set of all finite sequences of elements of X) such that (1)
ε ∈ dom(T ), (2) if p ∈ dom(T ) and T (p) = a and the arity of a is n, then
p i ∈ dom(T ) if and only if 1 ≤ i ≤ n. For Σ⊥-labelled trees T and T ′, we write
T v T ′ if and only if dom(T ) ⊆ dom(T ′) and for all p ∈ dom(T ), T (p) = ⊥ or
T (p) = T ′(p).

A higher-order recursion scheme (recursion scheme for short) is a quadruple
G = (Σ,N ,R, S), where Σ is a set of terminals, N is a finite set of variables
called non-terminals, R is a set of rewriting rules, and S is a distinguished non-
terminal of sort o called the start symbol. We assume Σ and N are disjoint. Each
rule in R is of the form F x1 . . . xn → M , where F :: A1 → · · · → An → o,
xi :: Ai (1 ≤ i ≤ n) and M is an applicative term of sort o that satisfies
fv(M) ⊆ Σ∪N∪{x1, . . . , xn}. We write R(F ) = λx̃.M if F x1 . . . xn →M ∈ R,
where λx̃ is an abbreviation for λx1 . . . xn. We use a and b for terminals and F
and G for non-terminals. Given a recursion scheme G, the rewriting relation −→G
is the least relation that satisfies: (1) F N1 . . . Nk −→G M [N1/x1, . . . , Nk/xk]
if R(F ) = λx1 . . . xk.M (here M [N1/x1, . . . , Nk/xk] means the simultaneous
substitution of Ni for xi in M), and (2) M −→G M

′ implies N M −→G N M ′

and M N −→G M
′ N for all N . For a term M of sort o that satisfies fv(M) ⊆

Σ ∪N , we write M⊥ for the Σ⊥-labelled tree defined by: (1) (aM1 . . .Mn)
⊥ =

aM⊥
1 . . .M⊥

n if a ∈ Σ, and (2) (F M1 . . .Mn)
⊥ = ⊥ if F ∈ N . The value tree of

G, written [[G]], is a (possibly infinite) Σ⊥-labelled tree defined as the least upper
bound of {M⊥ | S −→∗

G M} with respect to v, where −→∗
G is the reflexive and

transitive closure of −→G .
A trivial automaton A is a quadruple (Σ,Q, δ, q0), where Σ is the set of

terminals, Q is a finite set of states, δ ⊆ Q × Σ × Q∗ is a transition relation,
and q0 ∈ Q is the initial state. A Σ-labelled tree T is accepted by A if there
exists a (total) function % : dom(T ) → Q (called a run tree) such that (1)
%(ε) = q0 and (2) for every p ∈ dom(T ), (%(p), T (p), %(p 1) . . . %(p n)) ∈ δ where
n is the arity of T (p). For a trivial automaton A = (Σ,Q, δ, q0), we write A⊥

for (Σ⊥, Q, δ ∪ {(q,⊥, ε) | q ∈ Q}, q0).
The model checking of recursion schemes against trivial automata is the prob-

lem to decide, given a recursion scheme G and a trivial automaton A, whether
[[G]] is accepted by A⊥. In the sequel, the problem is simply called higher-order
model checking. In the following, we assume that [[G]] does not contain ⊥. This
can be assumed without loss of generality [8].
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Fig. 1. The value tree [[G0]] and a run tree

Example 1. Let G0 be the recursion scheme (Σ, {So, F o→o},R, S) where Σ =
{ao→o→o, bo→o, co} and R is given by R = {S → F c, F x→ a x (F (b x))}. Then

S −→G0 F c −→G0 a c (F (b c)) −→G0 a c (a (b c) (F (b (b c))) −→G0 · · ·

and the value tree [[G0]] is shown in Fig. 1. Consider the trivial automaton A0 =
(Σ, {q0, q1}, δ, q0), where δ={(q0, a, q0q0), (q0, b, q1), (q1, b, q1), (q0, c, ε), (q1, c, ε)}.
The automaton accepts a tree in which for every node labelled by a, its ancestor
is not labelled by b. Thus A0 accepts [[G0]]. A run tree is shown in Fig. 1. ut

Higher-order model checking can be reduced to a type checking problem of
an intersection type system [8]. Let G = (Σ,N ,R, S) be a recursion scheme
and A = (Σ,Q, δ, q0) be a trivial automaton, fixed in the following. Let q be a
metavariable ranging over Q. The set of intersection types are defined by:

Types φ, ψ ::= q | φ→ ψ

Intersections φ, ψ ::= ω | φ | φ ∧ ψ

The type operator ∧ is called an intersection operator. Intuitively M : φ ∧ ψ
means that M has types φ and ψ, i.e. M : φ and M : ψ. The intersection
operator ∧ is associative, commutative and idempotent, i.e. for any intersections
φ1, φ2 and φ3, we have φ1 ∧ φ1 = φ1, φ1 ∧ φ2 = φ2 ∧ φ1 and (φ1 ∧ φ2) ∧ φ3 =
φ1 ∧ (φ3 ∧ φ3), and ω is the unit element of ∧, i.e. ω ∧ φ = φ ∧ ω = φ for any
intersection φ. By these laws, one can write intersections as

∧
{φ1, φ2, . . . , φn}

(here n ≥ 0) without any confusion. The refinement relation φ :: A, which means
the structure of type φ follows that of sort A, is defined by: (1) q :: o, and (2)∧
{φ1, . . . , φn} → ψ :: A→ B if ∀i ∈ {1, . . . , n}. φi :: A and ψ :: B.

A type environment is a finite set of bindings of the form xA :
∧
{φ1, . . . , φn}

such that φi :: A for all i ≤ n. We write dom(Γ ) = {x | x : φ ∈ Γ}. We
define Γ (x) =

∧
{φ1, . . . , φn} if x :

∧
{φ1, . . . , φn} ∈ Γ and Γ (x) = ω otherwise.

For type environments Γ and ∆, we define Γ ∧ ∆ = {x : Γ (x) ∧ ∆(x) | x ∈
dom(Γ )∪dom(∆)}. If x :

∧
{φ1, . . . , φn} ∈ Γ and 1 ≤ i ≤ n, we write x : φi ∈ Γ .

We often write {x : φi | 1 ≤ i ≤ n} for {x :
∧
{φ1, . . . , φn} }. Typing rules are

listed below.

x : φ ∈ Γ

Γ ` x : φ

Γ `M : φ→ψ ∆ ` N : φ

Γ ∧∆ `M N : ψ

∆i `M : φi (∀i ∈ {1, . . . , n})
∆1 ∧ · · · ∧∆n `M :

∧
{φ1, . . . , φn}
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We write Γ ` R(F ) : φ1 → · · · → φn → q if R(F ) = λx1 . . . xn.M and Γ ∩
{x1, . . . , xn} = ∅ and Γ ∧ {xi : φi | 1 ≤ i ≤ n} ` M : q. For a type environment
Γ such that dom(Γ ) ⊆ N and a type environment Θ such that dom(Θ)∩N = ∅,
we write Θ ` (M,G) : (φ, Γ ) if (1) Γ ∧ Θ ` M : φ and (2) Γ ∧ Θ ` R(F ) : ψ
for all F : ψ ∈ Γ . Here Γ describes types of non-terminals that are defined by
mutual recursion and condition (2) requires that the recursion is well-typed.

A type binding a : q1 → · · · → qn → q for a terminal respects the transition
relation δ, written δ � a : q1 → · · · → qn → q, if (q, a, q1 . . . qn) ∈ δ. Given a type
environment Θ such that dom(Θ) ⊆ Σ, we write δ � Θ if ∀a : φ ∈ Θ. δ � a : φ.

The model checking problem is reduced to a type checking problem.

Theorem 1 (Kobayashi [8]). Let G = (Σ,N ,R, S) be a recursion scheme and
A = (Σ,Q, δ, q0) be a trivial automaton. Then [[G]] is accepted by A if and only
if there exist Θ and Γ such that (1) Θ ` (S,G) : (q0, Γ ) and (2) δ � Θ. ut

Example 2. Consider G0 and A0 defined in Example 1. Let Θ = {a : q0 → q0 →
q0, b : (q1 → q0) ∧ (q1 → q1), c : q0 ∧ q1} and Γ = {S : q0, F : (q1 ∧ q0) → q0}.
Then Θ ` (S,G) : (q0, Γ ) and δ � Θ. ut

By Theorem 1, the model checking problem is reduced to the problem to
find a pair (Θ,Γ ) of type environments for terminals and non-terminals. With-
out loss of generality, we can assume Θ to be Θδ = {a : q1 → · · · → qn →
q | (q, a, q1 . . . qn) ∈ δ}. Thus the problem is now to find an appropriate type
environment Γ for non-terminals. We call Γ in Theorem 1 a certificate.

For the purpose of developing a type checking (= model checking) algorithm,
we further rephrase the above condition. Let us define the function ShrinkG,A
on type environments by:

ShrinkG,A(Γ ) = {F : φ ∈ Γ | ∃Θ. Θ, Γ ` R(F ) : φ and δ � Θ}.

Then, the condition in the theorem above can be rephrased as the existence of
a post-fixedpoint Γ of ShrinkG,A such that S : q0 ∈ Γ . Let gfp(ShrinkG,A, Γ )
is the greatest fixedpoint of ShrinkG,A smaller than Γ . Then the condition
is further reduced to the existence of a type environment Γ such that S : q0 ∈
gfp(ShrinkG,A, Γ ). Here, gfp(ShrinkG,A, Γ ) is the certificate mentioned above,
and Γ is an over-approximation of it.

Since gfp(ShrinkG,A, Γ ) can be easily computed if Γ is sufficiently small,
all the previous algorithms [7, 9, 13] try to find such an over-approximation Γ
by using various methods. TRecS [7] obtains it by partially reducing the start
symbol S and observing how non-terminal symbols are used. GTRecS [9] ob-
tains an over-approximation by gradually refining the types of non-terminals
using some game-semantic intuitions. Neatherway et al. [13] obtains the exact
certificate (without an approximation) by using the notion of traversals [15].

Our approach introduced in the rest of the paper can be considered yet an-
other method to compute an over-approximation of the certificate, based on
the notion of type derivation rewriting. As a preparation, we rephrase the con-
dition Θ ` (S,G) : (q0, Γ ) for the certificate. We add the following rule for
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` a : q0 → q0 → q0 ` x : q0

` a x : q0 → q0

...
` a x (F (b x)) : q0

` F : (q0 ∧ q1) → q0

...
` b x : q0

...
` b x : q1

` b x : q0 ∧ q1
` F (b x) : q0

` a x (F (b x)) : q0

` F : (q0 ∧ q1) → q0

` c : q0 ` c : q1
` c : q0 ∧ q1

` F c : q0
` S : q0

Fig. 2. An infinite derivation (here type environments are omitted)

non-terminals:

Γ ∧ {xi : φi | 1 ≤ i ≤ n} `M : q

Γ ` F : φ1 → · · · → φn → q

[
R(F ) = λx1 . . . xn.M
dom(Γ ) ∩ {x1, . . . , xn} = ∅

]
The rule expands the non-terminal and checks if the body has a required type.
Then, Θ ` (S,G) : (q0, Γ ) is equivalent to the existence of a possibly infinite
type derivation whose conclusion is Θδ ` S : q0. Figure 2 shows an example of
such an infinite derivation tree. The certificate Γ is then the set of type bindings
for non-terminals occurring in the derivation tree. Section 3 gives an algorithm
for incrementally constructing such an infinite derivation tree (albeit for a differ-
ent intersection type system) by type derivation rewriting, and Section 4 gives
an abstraction of the derivation rewriting to accelerate the construction and
ensure termination. The type environment obtained by the abstraction is an
over-approximation of the types of non-terminals, but as explained above, we
can apply the fixed-point computation to obtain the actual certificate.

3 Concrete Model: Derivation Rewriting

Given a recursion scheme G and a trivial tree automaton A, we construct a
rewriting system on (incomplete) derivations in an intersection type system. The
possibly infinite type derivation mentioned at the end of Section 2 is obtained
as the result of infinite rewriting.

3.1 Overview of Derivation Rewriting

We use an example to present the idea of derivation rewriting that will be for-
malised in the following subsections. Let us consider a term F a with R(F ) =
λg.g c and a trivial automaton A whose transition rule is δ = {(q0, a, q1), (q1, c, ε)},
and check if the value tree of F a is accepted by A, i.e. if the term has type q0.
Figure 3 illustrates a part of the type inference process based on derivation
rewriting.
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` F a : q0

(1)

` F :ω→q0

` F a : q0

(2)

` g c : q0
` F :ω→q0

` F a : q0

(3)

` g :ω→q0

` g c : q0
` F :ω→q0

` F a : q0

(4)

g :ω→q0 ` g :ω→q0

` g c : q0
` F :ω→q0

` F a : q0

(5)

g :ω→q0 ` g :ω→q0

g : ω→q0 ` g c : q0
` F :ω→q0

` F a : q0

(6)

g :ω→q0 ` g :ω→q0

g : ω→q0 ` g c : q0
` F : (ω→q0)→q0

` F a : q0

(7)

g :ω→q0 ` g :ω→q0

g : ω→q0 ` g c : q0
` F : (ω→q0)→q0 ` a :ω→q0

` F a : q0

(8)

g :ω→q0 ` g :ω→q0

g : ω→q0 ` g c : q0
` F : (ω→q0)→q0 a :ω→q0 ` a :ω→q0

` F a : q0

(9)

g :ω→q0 ` g :ω→q0

g : ω→q0 ` g c : q0
` F : (ω→q0)→q0 a :ω→q0 ` a :ω→q0

a : ω→q0 ` F a : q0

(10)

Fig. 3. Overview of derivation rewriting (here R(F ) = λg.g c)

The type inference process starts from derivation (1) in Fig. 3. Unlike usual
type systems, we allow derivations to have a certain kind of type mismatch.
For example, derivation (1) concludes ` F a : q0 without any premises, which is
incorrect in the usual sense. We use a double line to indicate the position of a
type mismatch. Derivation rewriting locally resolves the type mismatch.

In order to resolve the type mismatch in derivation (1), we need to find
appropriate types for F and a. By the application rule, F must have type φ→ q0
and a must have type φ for some φ. Since we do not have any constraints on
the argument of F at the moment, we choose φ to be the empty intersection ω.
In this way, derivation (1) is rewritten to derivation (2) (here we omit ` a : ω
as it trivially holds). Now the type mismatch is found at the rule deriving ` F :
ω → q0. To resolve it, one expands the definition of F and checks if the body has
the required type, resulting in derivation (3). The type mismatch in derivation
(3) can be resolved in the same way as the one in derivation (1), and we obtain
derivation (4). In this way, we went up the derivation and reached variable g.

In order for variable g to have type ω → q0, the type environment must
contain the assumption g : ω → q0 (derivation (5)). We now propagate this
update of the type environment downwards (derivation (6)). Because variable g
is the (formal) argument of F , this update is propagated to the argument type
of F (derivation (7)).

Now the type mismatch is at the application of F to a. F requires its argu-
ment to have type ω → q0, while a has currently type ω (recall that ` a : ω is
omitted in derivations (2)–(7)). So we update the type for a (derivation (8)) and
in the same way as above, we obtain derivation (10) that has no type mismatch.

7



Unfortunately derivation (10) in Fig 3 is not satisfactory since the type en-
vironment does not respect the transition rule of A. In order to make the type
environment respect the transition rule, we need to replace the typing binding
a : ω → q0 with a : q1 → q0 since (q0, a, q1) ∈ δ. This update shall also be prop-
agated to an appropriate position. After several steps of rewriting, one finally
reaches a derivation of a : q1 → q0, c : q1 ` F a : q0 that respects the transition
rule and has no type mismatch.

3.2 Rigid Intersection Type System

The derivation rewriting above is actually formalised for another intersection
type system called a “rigid” intersection type system, instead of the type system
in Section 2 (see Remark 1 below). An intersection operator is rigid [14], if
it is not associative, commutative nor idempotent. The intersection operator
introduced in this section is rigid in this sense. Several rigid intersection type
systems have been studied [5, 14, 3]. The rigid intersection type system in this
section is essentially equivalent to the one of Di Gianantonio et al. [3], which has
a formal connection to game semantics.

The new type system is also very similar to that in Section 2. In fact the only
difference is whether or not the intersection operator is associative, commutative
and idempotent. The intersection operator in Section 2 is referred to as a flexible
intersection operator, in order to distinguish it from the rigid one.

Remark 1. Advantages of developing derivation rewriting for the rigid intersec-
tion type system can be listed as follows. First, it has some nice properties such
as progress and determinacy of rewriting (Theorem 2). Secondly, we can use the
connection to game semantics [4, 1] established by Di Gianantonio et al. [3] to
prove properties such as Theorem 3. Thirdly, a derivation rewriting system for
the flexible intersection type system can be obtained by abstraction of that for
the rigid intersection type system, but we cannot do the converse. ut

Let Q be a finite set. We use p and q as metavariables ranging over Q. The
set of rigid intersection types over Q are defined by the following grammar.

Types τ, σ ::= q | α→ τ
Rigid Intersections α, β ::= ∅ | τ | α C β

Here ∅ is a constant meaning the empty intersection. Rigid intersections are sim-
ply called intersections when it is not confusing. For a sequence of intersections
α̃ = α1, α2, . . . , αn and a type τ , we write α̃→ τ for α1 → α2 → · · · → αn → τ .

As we emphasised above, the intersection connective C is not idempotent,
commutative nor associative, i.e. in general α C α 6= α, α C β 6= β C α and
(α1 C α2) C α3 6= α1 C (α2 C α3). The only exception is idempotency of ∅, and
thus ∅ = ∅ C ∅ = (∅ C ∅) C ∅ = ∅ C (∅ C ∅). It is worth noting that ∅ is not a unit
element of C, i.e. ∅ C α 6= α.

An in the type system in Section 2, we consider only a type that follows the
structure of a sort. For a sort A, we write τ :: A (resp. α :: A) when type τ
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†
a : q → q ` a : q → q

(1)

†
a : q → q ` a : q → q

(2)
†

b : q ` b : q
a : (q → q)C∅, b : ∅Cq ` a b : q

a : (q → q)3C((q → q)4C∅), b : ∅C(∅Cq) ` a (a b) : q
Fig. 4. An example of a type derivation in the rigid intersection type system

(resp. intersection α) follows the structure of A. Formally τ :: A and α :: A are
inductively defined by (1) ∅ :: A for any sort A, (2) q :: o, (3) α :: A and τ :: B
implies α→ τ :: A→ B, and (4) α :: A and β :: A implies α C β :: A.

A type environment is a finite set of bindings {x1 : α1, x2 : α2, . . . , xn :
αn} for pairwise distinct variables x1, . . . , xn. For a sequence of variables x̃ =
x1, x2, . . . , xn and intersections α̃ = α1, . . . , αn, we write x̃ : α̃ for the type
environment {xi : αi | 1 ≤ i ≤ n}. A type environment Γ is well-sorted if α :: A
holds for every binding xA : α ∈ Γ . By abuse of notation, we write ∅ for the
empty type environment { }. The domain dom(Γ ) of a type environment Γ is
defined by dom(Γ ) = {x | ∃α. x : α ∈ Γ}. We write Γ (x) = α if x : α ∈ Γ and
Γ (x) = ∅ if x /∈ dom(Γ ). Given type environments Γ and ∆, their intersection is
defined by: Γ C∆ = {x : Γ (x) C∆(x) | x ∈ dom(Γ ) ∪ dom(∆)}. If the domains
of Γ and ∆ are disjoint, i.e. dom(Γ ) ∩ dom(∆) = ∅, we simply write Γ,∆ for
their intersection Γ C∆. The typing rules are listed below:

Γ, x̃ : α̃ `M : q

Γ ` F : α̃→ q
[R(F ) = λx̃.Mo]

†
x : τ ` x : τ

♦
∅ `M : ∅

Γ `M : α→ τ ∆ ` N : α
Γ C∆ `M N : τ

Γ `M : τ ∆ `M : σ
Γ C∆ `M : τ C σ [τ C σ 6= ∅]

where well-sortedness is required in the rule for variables, i.e. there exists sort
A such that x :: A and τ :: A. Symbols † and ♦ are used to record which rule is
used there. The side condition τ C σ 6= ∅ is for the technical convenience and it
is easy to see that this condition is harmless.

The typing rules above are mostly standard, except for the rule for non-
terminals, which expands the non-terminals and checks if the body has a required
type, similar to the rule discussed at the end of Section 2. Note that we shall
only consider finite derivations.

Figure 4 presents an example of a type derivation in the rigid intersection type
system. Thanks to the rigidness of the intersection operator, we can distinguish
between different occurrences of the same type. This is the reason why we employ
the rigid intersection operator. For example, let us consider the derivation in
Fig. 4. One can say that the occurrence of q → q labelled by 3 in the conclusion
is used at the rule labelled by (1), and 4 in the conclusion is used at (2). The
notion of occurrences plays an important role in the definition of derivation
rewriting.
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(2)
` F :ω→ q̌0

(3)
` g c : q̌0

(4)
` g :ω→ q̌0

(5)
g :ω→ q̌0 ` g :ω→q0 ` c : ω

` g c : q0

(6)
g : ω→ q̌0 ` g c : q0

` F :ω→q0
(7)

` F : (ω→ q̌0)→q0 ` a : ω

` F a : q0
(8)

` a :ω→ q̌0

(9)
` F : (ω→q0)→q0 a :ω→ q̌0 ` a :ω→q0

` F a : q0

Fig. 5. Type mismatches seen in Fig. 3

3.3 Incomplete Derivations

We define incomplete derivations, which are used to represent intermediate steps
of the type inference, like derivations (1) to (9) in Fig. 3. Roughly speaking, in-
complete derivations are those with exactly one type mismatch, which is marked
with a double line in Fig. 3. One may notice that type mismatches appearing in
derivations in Fig. 3 are in certain special forms. We formalise them as incom-
plete typing rules and then define incomplete derivations as those with exactly
one use of an incomplete typing rule.

We clarify what kind of type mismatch should be allowed to occur, by exam-
ining derivations in Fig. 3. Figure 5 shows type mismatches (i.e. rules marked
with a double line) in Fig. 3. One may feel that rules in Fig. 5 closely resem-
ble usual typing rules. In fact, removing an occurrence of a base type marked
with check (̌ ) yields a usual typing rule. For example, removing the marked
occurrences4 from (2), (5) and (7) in Fig. 5 results in the following typing rules:

(2’)
` F :ω

(5’) g :ω ` g :ω→q0 ` c :ω
` g c :q0

(7’) ` F :ω→q0 ` a :ω
` F a :q0

So the difference between a type mismatch in Fig. 3 and a usual typing rule is just
one occurrence of a base type. We then focus on the position of the difference.
It is easy to see that the difference is at a covariant position in the conclusion
(as in (2), (3), (4) and (8)), or at a contravariant position in a premise (as in
(5), (6), (7) and (9)), where the position of a type environment in a judgement
is regarded as contravariant, e.g. in the judgement x : p1 → p2 ` M : q1 → q2,
positions of p1 and q2 are covariant and those of p2 and q1 are contravariant.

The above observation leads to the following definitions.
For types τ and σ, we write τ C σ if removal of an occurrence of a base type

in σ yields τ . If the occurrence is at a covariant position (resp. a contravariant
position), we write τ CO σ (resp. τ CP σ) and say that σ is an O-extension (resp.
a P-extension) of τ . The relations CO and CP are called extension relations.
Formally CO and CP on types (and on intersections) are inductively defined by

4 Here we define the result of removal of q̌0 from ω → q̌0 is not ω → ω but ω, since
ω → ω is syntactically invalid.
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∅A1→···→An→o CO ∅A1 → · · · → ∅An → q

αCX α′

α C β CX α′ C β β CX β′

α C β CX α C β′
β CX β′

α→ β CX α→ β′
αCX α′

α→ β CX α′ → β

Fig. 6. O- and P-extension of types (here X ∈ {O,P}, O = P and P = O)

the rules in Fig. 6. Extension of a type environment is obtained by extending
a type of one variable, leaving others unchanged. So Γ CO ∆ if there exists a
variable x such that Γ (x) CO ∆(x) and Γ (y) = ∆(y) for all y 6= x. We write
Γ ` M : τ CP ∆ ` M : σ if (1) Γ = ∆ and τ CP σ, or (2) Γ CO ∆ and τ = σ
(recall that the position of Γ in Γ ` M : τ is contravariant). In the same way,
Γ CP ∆ and Γ `M : τ CO ∆ `M : σ are defined.

Remark 2. Extension of types and type judgements corresponds to extending a
play in game semantics [1, 4]: O- and P-extensions respectively correspond to
the extensions of a play by adding an O-move and a P-move. For more details,
see the full version of the paper. A variant of extension relations can be found
in [9], which is also inspired by game semantics. ut

An incomplete typing rule is obtained by replacing the conclusion of a typing
rule to its O-extension (the resulting typing rules are called O-rules), or by
replacing a premise of a typing rule to its P-extension (the resulting typing rules
are called P-rules). The list of O- and P-rules is shown in Fig. 7. Typing rules
in the previous subsection are now called complete typing rules. We use double
lines for incomplete typing rules, in order to distinguish them from complete
typing rules.

An incomplete derivation is one derived from complete typing rules with
exactly one use of an incomplete rule. A derivation that uses only complete rules
is called a complete derivation.

We introduce marks N and H to express which judgement has been extended.
For example, since (O-App) rule is obtained by replacing the conclusion of
(App) rule with its O-extension, we add N the conclusion Γ ′ C ∆′ ` M N : τ
and write an instance of (O-App) rule as:

Γ `M : α→ τ ∆ ` N : α

Γ ′ C∆′ `M N : τ ′ N .

Note that these marks are used just for readability. Each instance of an incom-
plete typing rule has a unique annotation that can be easily reconstructed.

For the technical convenience, we introduce a symbol ? indicating the root
of the derivation, which has the following typing rules:

Γ `M : τ
? (?)

Γ `M : τ H
? (P-?)

We require that the conclusion of derivations must be ?. By this assumption,
every judgement in a derivation has its parent; in other words, every judgement

11



(O-Var1)
†

x : τ ` x : τ ′
[τ CO τ ′]

(O-Var2)
†

x : τ ′ ` x : τ
[τ CP τ

′]

(O-♦)
♦

∅ `M : τ
[∅CO τ ]

(O-Fun)
Γ, x̃ : α̃ `M : q

Γ ′ ` F : α̃′ → q′

[
R(F ) = λx̃.Mo

Γ ` F : α̃→ q CO Γ ′ ` F : α̃′ → q′

]

(P-Fun)
Γ ′, x̃ : α̃′ `M : q′

Γ ` F : α̃→ τ

[
R(F ) = λx̃.Mo

Γ, x̃ : α̃ `M : q CP Γ ′, x̃ : α̃′ `M : q′

]
(O-App) Γ `M : α→ τ ∆ ` N : α

Γ ′ C∆′ `M N : τ ′

[
Γ C∆ `M N : τ

CO Γ ′ C∆′ `M N : τ ′

]
(P-AppL) Γ ′ `M : α′ → τ ′ ∆ ` N : α

Γ C∆ `M N : τ

[
Γ `M : α→ τ

CP Γ ′ `M : α′ → τ ′

]
(P-AppR) Γ `M : α→ τ ∆′ ` N : α′

Γ C∆ `M N : τ
[∆ ` N : α CP ∆′ ` N : α′]

(O-Int)
Γ `M : α ∆ `M : β

Γ ′ C∆′ `M : α′ C β′

[
Γ C∆ `M : α C β

CO Γ
′ C∆′ `M : α′ C β′

]

(P-IntL)
Γ ′ `M : α′ ∆ `M : β

Γ C∆ `M : α C β [Γ `M : α CP Γ ′ `M : α′]

(P-IntL)
Γ `M : α ∆′ `M : β′

Γ C∆ `M : α C β [∆ `M : β CP ∆′ `M : β′]

Fig. 7. Incomplete typing rules

(1)

†
a : ∅ → q ` a : ∅ → q

♦
∅ ` b : ∅

a : (p→ q) C ∅ ` a b : q N
?

(2)

†
a : p→ q ` a : ∅ → q N

♦
∅ ` b : ∅

a : (p→ q) C ∅ ` a b : q
?

(3)

†
a : p→ q ` a : p→ q H

♦
∅ ` b : ∅

a : (p→ q) C ∅ ` a b : q
?

(4)

†
a : p→ q ` a : p→ q

♦
∅ ` b : p N

a : (p→ q) C ∅ ` a b : q
?

(5)

†
a : p→ q ` a : p→ q

†
b : p ` b : p H

a : (p→ q)C∅ ` a b : q
?

(6)

†
a : p→ q ` a : p→ q

†
b : p ` b : p

a : (p→ q)C∅, b : ∅Cp ` a b : q H
?

Fig. 8. Incomplete derivations and local resolutions of type mismatches
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is used as a premise of a rule. Moreover we can assume without loss of general-
ity that all derivations have exactly one use of a double-lined rule: a complete
derivation is regarded as a derivation with (P-?).

Figure 8 gives examples of incomplete derivations.

3.4 Derivation Rewriting

Here we provide a method to make an incomplete derivation complete, by iter-
ation of local resolutions of type mismatches. For example, let us consider the
incomplete derivation (1) in Fig. 8. In derivation (1), the type mismatch is found
at the type for a in the environment: in the judgement marked with N, a is as-
sumed to be a function taking an argument of type p, but in its left premise, a is
a function taking an arbitrary argument (i.e. one of type ∅). One way to resolve
this type mismatch is to change the type environment of the premise. The result-
ing derivation is (2) in Fig. 8, in which the judgement a : (p → q) C ∅ ` a b : q
is derived by a complete typing rule. However the change introduces another
type mismatch, i.e. an incomplete derivation for a : p → q ` a : ∅ → q. To
resolve the type mismatch, we change the type for the subject a to p → q and
obtain derivation (3). There is also a type mismatch in derivation (3), in which
b is required to have type p but actually has type ∅, and a local resolution of
the type mismatch results in derivation (4). Thus, we finally reaches a complete
derivation, (6) in Fig. 8.

We formalise the above idea by defining derivation rewriting. For derivations
D and D′, we write D −→ D′ if D is rewritten to D′. For derivations in Fig. 8,
(1) −→ (2) −→ (3) −→ (4) −→ (5) −→ (6) holds, as expected. In each step
of rewriting, an incomplete typing rule is replaced with a complete one, and at
the same time another use of an incomplete typing rule (that may be (P-?)) is
introduced to the derivation. At the end we reach a derivation using (P-?) rule,
i.e. a complete derivation.

Derivation rewriting rules are listed in Fig. 9 and Fig. 10. In these figures, we
omit the context in which the incomplete typing rule is used, and subderivations
of its premises. For example, it might be better to write (NApp1) as

D1

Γ `M : α→ τ

D2

∆ ` N : α

Γ ′ C∆ `M N : τ ′ N
C

−→

D1

Γ ′ `M : α→ τ ′ N
D2

∆ ` N : α
Γ ′ C∆ `M N : τ ′

C

.

An instance of the rule is (1) −→ (2) in Fig. 8, in which C = ? and D1 = D2 = ♦.

Theorem 2 (Progress and Determinacy of Rewriting). For any incom-
plete derivation D, there exists a derivation D′ such that D −→ D′. Moreover if
D −→ D1 and D −→ D2, then D1 = D2. ut

3.5 Connection to Higher-Order Model Checking

So far the goal has been to obtain a complete derivation. However, as we have
seen in Section 3.1, the resulting complete derivation may not respect the tran-
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(Var1)
†

x : τ ` x : τ ′ N −→ †
x : τ ′ ` x : τ ′ H

[τ CO τ ′]

(Var2)
†

x : τ ′ ` x : τ N −→ †
x : τ ′ ` x : τ ′ H

[τ CP τ
′]

(NFun)
Γ, x̃ : α̃ `M : q

Γ ′ ` F : α̃′ → q′ N −→
Γ ′, x̃ : α̃′ `M : q′ N
Γ ′ ` F : α̃′ → q′

(HFun)
Γ ′, x̃ : α̃′ `M : q′ H

Γ ` F : α̃→ q
−→

Γ ′, x̃ : α̃′ `M : q′

Γ ′ ` F : α̃′ → q′ H

(NApp1) Γ `M : α→ τ ∆ ` N : α

Γ ′ C∆ `M N : τ ′ N −→ Γ ′ `M : α→ τ ′ N ∆ ` N : α

Γ ′ C∆ `M N : τ ′

(NApp2) Γ `M : α→ τ ∆ ` N : α

Γ C∆′ `M N : τ N −→ Γ `M : α→ τ ∆′ ` N : α N
Γ C∆′ `M N : τ

(HApp1) Γ
′ `M : α→ τ ′ H ∆ ` N : α

Γ C∆ `M N : τ
−→ Γ ′ `M : α→ τ ′ ∆ ` N : α

Γ ′ C∆ `M N : τ ′ H

(HApp2) Γ `M : α′ → τ H ∆ ` N : α

Γ C∆ `M N : τ
−→ Γ `M : α′ → τ ∆ ` N : α′ N

Γ C∆ `M N : τ

(HApp3) Γ `M : α→ τ ∆′ ` N : α H
Γ C∆ `M N : τ

−→ Γ `M : α→ τ ∆′ ` N : α

Γ C∆′ `M N : τ H

(HApp4) Γ `M : α→ τ ∆ ` N : α′ H
Γ C∆ `M N : τ

−→ Γ `M : α′ → τ N ∆ ` N : α′

Γ C∆′ `M N : τ

(NInt1) Γ `M : τ ∆ `M : σ

Γ ′ C∆ `M : τ ′ C σ N −→ Γ ′ `M : τ ′ N ∆ `M : σ

Γ ′ C∆ `M : τ ′ C σ
(NInt2) Γ `M : τ ∆ `M : σ

Γ C∆′ `M : τ C σ′ N −→ Γ `M : τ ∆′ `M : σ′ N
Γ C∆′ `M : τ C σ′

(HInt1) Γ ′ `M : τ ′ H ∆ `M : σ

Γ C∆ `M : τ C σ −→ Γ ′ `M : τ ′ ∆ `M : σ

Γ ′ C∆ `M : τ ′ C σ H

(HInt2) Γ `M : τ ∆′ `M : σ′ H
Γ C∆ `M : τ C σ −→ Γ `M : τ ∆′ `M : σ′

Γ C∆′ `M : τ C σ′ H

Fig. 9. Derivation rewriting rules (part 1)
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(N-♦1)
♦

∅ `M : τ C ∅ N −→

♦
∅ `M : τ N

♦
∅ `M : ∅

∅ `M : τ C ∅

(N-♦2)
♦

∅ `M : ∅ C τ N −→

♦
∅ `M : ∅

♦
∅ `M : τ N

∅ `M : ∅ C τ
(N-♦3)

♦
∅ ` x : τ N −→ †

x : τ ` x : τ H

(N-♦4)
♦

∅ ` F : ∅̃ → q N −→

♦
∅ `M : q N

∅ ` F : ∅̃ → q
[R(F ) = λx1 . . . xn.M

o]

(N-♦5)
♦

∅ `M N : τ N −→

♦
∅ `M : ∅ → τ N

♦
∅ ` N : ∅

∅ `M N : τ

Fig. 10. Derivation rewriting rules (part 2)

sition rule of a given automaton. In that case, we need to continue the type
inference process by updating the type environment:

(H-?)
Θ ` S : q0 H

?
−→ Θ′ ` S : q0 N

?

[
Θ CP Θ

′

δ � ♦Θ′

]
Here δ � ♦Θ if and only if there exists a sequence of P-extensions Θ CP Θ1 CP

. . . CP Θn (n ≥ 0) such that δ � Θn. In contrast to incomplete derivations, a
complete derivation may have more than one successor, or no successor at all.

Now type inference by derivation rewriting can be represented by a (possibly
infinite) rewriting sequence of the form

♦
∅ ` S : q0 N

?
−→∗

...
Θ1 ` S : q0 H

?
−→

...
Θ2 ` S : q0 N

?
−→∗

...
Θ3 ` S : q0 H

?
−→ · · ·

where ∅ = Θ0 CO Θ1 CP Θ2 CO · · ·. We call the left-most derivation above the
initial derivation, and write Dinit for it. We say the sequence is fair if for all i,
every contra-variant occurrence of ∅ in Θi is eventually replaced with some base
type q ∈ Q. For example, if the sequence is fair and a : ∅→ q ∈ Θi for some i,
then there exists j > i such that a : p→q ∈ Θj for some p ∈ Q.

Theorem 3. Let G be a recursion scheme and A be a trivial tree automaton.
Then [[G]] is accepted by A if and only if there exists a rewriting sequence starting
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from Dinit such that (1) it is infinite and fair and satisfies δ � ♦Θi for every i,
or (2) it is finite and ends with a complete derivation of Θ ` S : q0 such that
δ � Θ. ut

Suppose that [[G]] is accepted by A. Theorem 3 intuitively says that by rewrit-
ing derivations in possibly infinite steps, one can reach a complete derivation that
certifies the acceptance of [[G]] by A. Thus an over-approximation of a certificate
can be intuitively computed from the set of all reachable derivations by collecting
all type bindings for non-terminals.

In fact, for some technical reason, we need an additional rewriting rule

(♦-GiveUp)
♦

∅ ` F :∅→ . . .→∅→q N −→
Ω

⊥ :q ` F :∅→ . . .→∅→q H

that gives up computing the subderivation any more and returns ⊥ that is a
sign of giving up (here Ω is just a symbol like † and ♦). With this rule, we can
construct an over-approximation of a certificate by using the derivation rewriting
system as follows. Let h be the map from rigid intersection types to flexible
intersection types that replaces C with ∧, and ΓConc be a type environment in
the flexible intersection type system defined by:

ΓConc = {F : h(τ) | ∃D ∃∆. Dinit −→∗ D and ∆ ` F : τ appears in D}.

Theorem 4. Suppose that [[G]] is accepted by A (and thus there exists a certifi-
cate). Then ΓConc is an over-approximation of a certificate. ut

4 Abstraction and Model-Checking Algorithm

Theorem 4 leads to a simple process computing an over-approximation of a
certificate.

1. Compute the set D of all derivations reachable from Dinit.
1-1. Let D := {Dinit}.
1-2. Let D′ := D ∪ {D′ | ∃D ∈ D. D −→ D′}.
1-3. If D ( D′, then set D := D′ and goto 1-2.

2. Return ΓConc := {F : h(τ) | ∃D ∈ D ∃∆. ∆ ` F : τ appears at D }.

However Step 1 may not terminate, or may take too long a time even if it
terminates. In this section, we overcome the problem by applying an abstraction
to D.

The abstraction map takes a set of derivations in the rigid type system and
returns a set of instances of typing rules in the flexible type system. The ab-
straction map collects all the instances of rigid typing rules appearing at D and
then replaces C with ∧. For example, the set shown in Fig. 11 is the result of
applying the abstraction map to the set {(4), (5)} of derivations in Fig. 8. The
definition of the abstraction map is straightforward and omitted.
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
a :p→q ` a b :q

?
, a :p→q ` a :p→q ` b :p

a :p→q ` a b :q
, †
a :p→q ` a :q

,
♦

` b :p N

a :p→q ` a :p→q b :p ` b :p H
a :p→q ` a b :q

, †
b :p ` b :p


Fig. 11. Abstraction of the set {(4), (5)} of derivations in Fig. 8

Suppose ♦
` x :φ N ∈ D̂ for some ω ≺O φ. Then †

x :φ ` x :φ
∈ D̂. Moreover,

(i) if J ` x :φ
K

∈ D̂, then
J x :φ ` x :φ H

K
∈ D̂;

(ii) if ` x : φ J

K
∈ D̂, then

x :φ ` x :φ H J

K
∈ D̂; and

(iii) if ` x :φ
J

∈ D̂, then
x :φ ` x :φ H

J
∈ D̂.

Fig. 12. Abstraction of rewriting rule (N-♦3) (here J and K are judgements)

Derivation rewriting rules can be easily adapted for the abstraction. Figure 12
shows the abstraction of the rewriting rule (N-♦). For example, (ii) says that for
every judgements J and K, if the left-hand side of

♦
` x : φ N J

K

−→
†

x : φ ` x : φ H J

K

may be a part of a reachable derivation, then by applying (N-♦3) rule, the
right-hand side may also be a part of a reachable derivation. See Appendix H
for abstractions of other rewriting rules.

The model-checking algorithm is described in Fig. 13. Step 1 and 2 are the
abstraction of the process to compute all reachable derivations, and step 3 is the
fixed-point computation described in Section 2. Correctness of the algorithm is
a consequence of Theorem 4 and the correctness of the abstract rewriting rules.

Theorem 5. The procedure in Fig. 13 always terminates and returns yes if and
only if [[G]] is accepted by A. ut

We estimate the complexity of the algorithm. Let |Q| be the number of states
of A, A be the arity of G, n be the order of G, and |G| =

∑
F∈N #R(F ) where

#M is the number of subterms of M . Since the size of D̂ and Γ are bounded
by O(|G| · expn(f(A · |Q|))) for some polynomial f (where exp0(x) = x and
expn+1(x) = 2expn(x)), the algorithm terminates in time linear (modulo certain
optimisations) in the size of |G| provided that the other parameters are fixed.
See the full version for details.

Theorem 6. The algorithm in Figure 13 runs in time O(|G| ·expn(f(A · |Q|))),
where f is a polynomial. ut
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ModelCheck(G,A):

1. Construct D̂ by:

1-1. Let D̂ :=

{
` S : q0

?
,

♦
` S : q0 N

}
;

1-2. Applying abstract rewriting rules to D̂

until reaching a fixed-point ;

2. Let Γ := {F : φ | ∃∆. ∆ ` F : φ appears in D̂} ;

3. Repeat Γ := ShrinkG,A(Γ ) until Γ = ShrinkG,A(Γ ) ;
4. If S : q0 ∈ Γ then output ’yes’, otherwise output ’no’ ;

Fig. 13. The model-checking algorithm

Table 1. Comparison of GTRecS2 with other model checkers

input TRecS GTRecS TravMC GTRecS2
Ocamlc 0.005 1.70 0.075 0.096
Order5 0.002 - 0.061 -
Gapid 0.008 - 0.425 3.43
Xhtmlf 0.596 13.0 - 46.3
Mc91 0.028 20.5 1.00 0.301

input TRecS GTRecS TravMC GTRecS2
G2,5 - 0.078 0.06 0.006
G3,5 - 0.136 - 0.084
G4,5 - 5.71 - 1.93
Fibstr - - - 0.168
L - 0.248 - 0.006

5 Experimental Results

We have implemented a model checker GTRecS2 based on the algorithm dis-
cussed in Section 4,5 except that Step 1-2 and 3 are interleaved in the actual algo-
rithm. We compared its performance with previous model checkers: TRecS [7],
GTRecS [9], and TravMC [13]. Except for TravMC, the experiments were
conducted on a machine with Intel(R) Xeon(R) CPU with 3Ghz and 8GB mem-
ory, with time-out set for 60 seconds. For TravMC, we have used the web
interface at http://mjolnir.cs.ox.ac.uk/cgi-bin/horsc/travmc-horsc/input, with
time-out set for 10 seconds. We have tested the model checkers for two groups
of benchmark programs. The first group, shown on the left-hand side, has been
obtained from program verification problems [7, 12, 11], for which TRecS works
well. The second group, shown on the right-hand side, consists of recursion
schemes that generate finite but huge trees [9, 10]. As expected, TRecS and
TravMC work well for the first group, while they behave quite badly for the
second group, since their type inference essentially relies on reductions of terms.
GTRecS and GTRecS2 work well for the second group, but GTRecS2 outper-
forms GTRecS by an order of magnitude except for Xhtmlf. GTRecS2 timed
out for Order5. This is because Order5 is an order-5 recursion scheme (while
the others are at most order-4), and the number of possible types blows up.
Further optimisations are necessary to make GTRecS2 scalable with respect to
the order of recursion schemes.

5 Actually, GTRecS2 has already been in use [10], but it has been formalised in the
present paper for the first time.

18



6 Related Work

As discussed in Section 1, there are several algorithms and implementations for
higher-order model checking. The first practical model checker is Kobayashi’s
TRecS [7]. As we have mentioned, it works in practice for many practical ex-
amples but suffers from hyper-exponential worst-case time complexity in the size
of recursion schemes. GTRecS [9] is the first practical algorithm that runs in
time linear in the size of recursion schemes. As confirmed by experiments, in
most cases, GTRecS is slower than GTRecS2. Our derivation rewriting is in-
fluenced by GTRecS. For example, P- and O-extension relations originate from
GTRecS [9].

Recently Neatherway et al. [13] have proposed an algorithm based on the
notion of traversals [15]. We have provided empirical comparison of their model
checker TravMC with GTRecS2 in Section 5. Here, we make theoretical com-
parison. A state of their algorithm is represented by a derivation possibly con-
taining open judgements, i.e. judgements that have not yet been proved, and the
main operation is closing of an open judgement by inferring the premises. These
notions seem closely related to those in our derivation rewriting system. How-
ever there is an important difference: our derivation rewriting is defined locally,
i.e. one-step rewriting only affects the neighbours of the incomplete typing rule;
whereas in their algorithm, closing an open judgement may affect a judgement
far from that. Due to this difference, their algorithm and ours showed quite
different behaviours in the experiments.

Several studies of rigid intersection type systems have shown strong connec-
tions to semantics of λ-calculi. Neergaard and Mairson [14] have proved that
for a given (untyped) λ-term, the principal typing for the term in a rigid inter-
section type system called System I [5] corresponds to the normal form of the
term, and thus the type inference in System I is equivalent to normalisation. Di
Gianantonio, Honsell and Lenisa [3] have independently proposed another rigid
intersection type system and established a relation between their type system
and game semantics [4, 1]. Our type system is essentially the same as theirs,
and the new contribution is the notion of incomplete derivation and derivation
rewriting, which give a new insights into semantic aspects of rigid intersection
type systems. The connection to game semantics is used to prove important
properties of derivation rewriting, such as Theorem 3.

Since the derivation rewriting can be regarded as an intersection type infer-
ence algorithm, it may be related to other inference algorithms for intersection
types such as [2, 5]. Establishing the formal connection is left for future work.
Since their algorithm terminates only for normalising λ-terms, it cannot be used
in our setting, where reductions of recursion schemes do not terminate.

7 Conclusion

Higher-order model checking provides a promising approach to verification of
higher-order programs, and development of an efficient higher-order model checker

19



is a significant challenge in this field. We have presented a new approach to devel-
oping algorithms for higher-order model-checking based on derivation rewriting
and its abstraction. We have implemented the algorithm based on the abstrac-
tion and confirmed that it outperforms previous model checkers in certain cases.
For future work, we aim to find a better abstraction than the one in the present
paper.
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A Basic Definitions: AJM’s Game Model

Here we define the game model proposed by Abramsky, Jagadeesan and Malacaria
(called AJM game model). Definitions here are somewhat different from the stan-
dard ones.

– Unlike the standard definition, a game in our definition has a justification
relation on moves as its component. The justification relation is used to
give a connection to the derivation rewriting system, and does not affect the
definition of play and composition.

– All moves are questions.
– The set of moves in an exponential is defined as an indexed product of moves,

similar to the original definition. In the original definition, the set of indexes
is the set of natural numbers, whereas we use another set as indexes (see
Definition 5).

Except for the differences listed above, the contexts of this section is the standard
presentation of AJM game model, and thus readers who are familiar with game
semantics can safely skip this section.

A.1 Sequences

For a set X, the set of all finite sequences on X is written as X∗. For s ∈ X∗, |s|
is the length of s and si is the ith element (1 ≤ i ≤ |s|). For s, t ∈ X∗, we write
s v t if s is a prefix of t. For s, t ∈ X∗, their concatenation is written as s · t and
st. For a sequence s and a set of sequences T , we write s · T for {s · t | t ∈ T}.
For x ∈ X and s ∈ X∗, we write x ∈ s if x appears in s.

Let Y ⊆ X be a subset of X and s ∈ X∗, the restriction s � Y ∈ Y ∗ is
inductively defined by

– ε � Y = ε,
– (s · x) � Y = (s � Y ) · x if x ∈ Y , and
– (s · x) � Y = s � Y if x /∈ Y .

For sequences s and t, we write s veven t if s v t and |s| is even (s is called
an even prefix of t). For a set A of sequences, Aeven is its restriction to sequences
of even length, i.e. Aeven = {s ∈ A | |s| is even }.

A.2 Games and Strategies

A game is a 5-tuple A = (M, λ, P,≈,`), where

– M is a set of moves. We use m and n for metavariables ranging over M and
s and t for metavariables over M∗.

– λ : M → {O,P} is the labelling function. We define O = P , P = O. The
function λ is defined by λ(x) = λ(x). We define MO = {m ∈ M | λ(m) = O}
and MP = {m ∈ M | λ(m) = P}.
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– P ⊆ M∗ is a prefix-closed subset of M∗ that satisfies if s ∈ P , then λ(s1) =
O and for all i < |s|, λ(si) 6= λ(si+1). An element of P is called a valid
position (or a play).

– ≈ is an equivalence relation on P that satisfies the following condition. For
every s, t ∈ M∗, s ≈ t implies (1) |s| = |t|, (2) for every s′ v s and t′ v t,
|s′| = |t′| implies s′ ≈ t′, and (3) sm ∈ P implies ∃n.(tn ∈ P and sm ≈ tn).

– ` is a binary relation on M that satisfies (1) if m ` n, then λ(m) 6= λ(n)
and (2) if ¬∃m. m ` n, then λ(n) = O. We call ` the justification relation.

A strategy is a non-empty subset s ⊆ P such that (1) for every s ∈ s, |s| is
even, and (2) for every s ∈ s, t veven s implies t ∈ s (i.e. s is even-prefix closed).
A strategy s is history-free if it satisfies the following conditions.

1. If smn ∈ s and tmn′ ∈ s, then n = n′.
2. If smn ∈ s, t ∈ s and tm ∈ P , then tmn ∈ s.

Let s and s′ be strategies. We write s w s′ if smn ∈ s, s′ ∈ s′ and sm ≈ s′m′

implies there exists n′ such that s′m′n′ ∈ s′ and smn ≈ s′m′n′. The relation ≈
on strategies is defined by s ≈ s′ if and only if s w s′ and s′ w s. It is symmetric
and transitive [1, Proposition 2.2], but not necessarily reflexive.

Let s be a strategy for A. We write s : A if s is history-free and s ≈ s. Now
≈ is an equivalence relation on {s | s : A}. Let s be a strategy such that s : A.
We define [s] as the equivalence class that contains s, i.e. [s] = {t : A | t ≈ s}. If
[s] is an equivalence class of strategies for A, we write [s] : A.

Given a strategy s : A, we can define a partial function Fun(s) : MO ⇀MP

by

Fun(s)(m) = n if ∃s. smn ∈ s.

(The function Fun(s) is well-defined because s is history-free.) Conversely a
partial function f : MO ⇀ MP induces an even-prefix closed set trace(f)
defined inductively by:

ε ∈ trace(f)

s ·m · f(m) ∈ trace(f) if s ∈ trace(f) and s ·m ∈ P .

Given a partial function f , trace(f) is not necessarily a strategy, since s·m·f(m)
may not be in P even if s ·m ∈ P . Note that trace(Fun(s)) = s for any strategy
s, and Fun(trace(f)) v f if trace(f) is a strategy.6 So for every strategy s,
there exists a least partial function on moves that induces s. In the following,
we identified a strategy with a partial function by this correspondence.

A.3 Constructions on Games

We give some constructions on games.
6 For partial functions f, g : X ⇀ Y , we write f v g if and only if dom(f) ⊆ dom(g)

and f(x) = g(x) for every x ∈ dom(f), where dom(f) = {x ∈ X | f(x) is defined}.
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Definition 1 (Tensor Product). Given games A1 = (M1, λ1, P1,≈1,`1) and
A2 = (M2, λ2, P2,≈2,`2), the game A1 ⊗A2 is defined as (M, λ, P,≈,`) where

– M = M1 +M2, here + means disjoint union of the sets.
– λ is defined by

λ(m) =

{
λ1(m) (if m ∈ M1)
λ2(m) (if m ∈ M2).

– P = {s ∈ (M1 +M2)
∗ | s � M1 ∈ P1 and s � M2 ∈ P2}.

– s ≈ t if and only if s � M1 ≈1 t � M1 and s � M2 ≈2 t � M2 and
∀i ≤ |s|. (si ∈ M1 ⇔ ti ∈ M1).

– m ` n if and only if m `1 n or m `2 n. ut

Definition 2 (Product). Given games A1 = (M1, λ1, P1,≈1,`1) and A2 =
(M2, λ2, P2,≈2,`2), the game A1&A2 is defined as (M, λ, P,≈,`) where

– M = M1 +M2.
– λ is defined by

λ(m) =

{
λ1(m) (if m ∈ M1)
λ2(m) (if m ∈ M2).

– P = P1 ∪ P2.
– s ≈ t if and only if s ≈1 t or s ≈2 t.
– m ` n if and only if m `1 n or m `2 n. ut

Definition 3 (Linear Implication). Given games A1 = (M1, λ1, P1,≈1,`1)
and A2 = (M2, λ2, P2,≈2,`2), the game A1 ( A2 is defined as (M, λ, P,≈,`)
where

– M = M1 +M2.
– λ is defined by

λ(m) =

{
λ1(m) (if m ∈ M1)
λ2(m) (if m ∈ M2).

– P = {s ∈ (M1 +M2)
∗ | s � A1 ∈ P1 and s � A2 ∈ P2}.

– s ≈ t if and only if s � A1 ≈1 t � A1 and s � A2 ≈2 t � A2 and ∀i ≤ |s|. (si ∈
A1 ⇔ ti ∈ A1).

– m ` n if and only if one of the following conditions holds.
• m,n ∈ M1 and m `1 n.
• m,n ∈ M2 and m `2 n.
• m ∈ M2 and n ∈ M1 and ¬∃n′. n′ `1 n. ut

Definition 4 (Index). The set of indexes is defined by the following grammar:

Indexes ξ ::= � | l · ξ | r · ξ | 〈ξ1, ξ2〉,

where �, l and r are symbols. We write the set of all indexes as I. ut
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We use I as the index set of the exponentials.

Definition 5 (Exponential). Given a game A = (M, λ, P,≈,`), the game !A
is defined as (M′, λ′, P ′,≈′,`′), where

– M′ = I ×M.
– λ′ is defined by λ′( (ξ,m) ) = λ(m).
– s ∈ P ′ if and only if s � ξ ∈ P for every ξ ∈ I. Here (s � ξ) ∈ M∗ is

defined inductively by: (1) ε � ξ = ε, (2) (s · (ξ,m) ) � ξ = (s � ξ) ·m, and (3)
(s · (ξ′,m) ) � ξ = s � ξ if ξ 6= ξ′.

– s ≈′ t if and only if there exists a permutation χ of I such that
• projI(si) = χ(projI(ti)) for every i ≤ |s|, where projI : I ×M → I is

the projection, and
• for every ξ ∈ I, s � χ(ξ) ≈ t � ξ.

– (ξ,m) `′ (ξ′,m′) if and only if ξ = ξ′ and m ` m′. ut

In the following, we implicitly assume that game A consists of (MA, λA, PA,≈A

,`A). For example, MA(B is the set of moves in the game A ( B. We often
omit the subscript A of ≈A and `A, and simply write ≈ and `.

Definition 6 (Well-justified). Let A = (M, λ, P,≈,`) be a game. A set X ⊆
M of moves is well-justified if for every m ∈ X, the justifier of m is also in X.
In other words, for every m ∈ X, one of the following conditions holds.

– There exists n such that n ` m and n ∈ X.
– There is no n such that n ` m. ut

A.4 Category of Games

Let A, B and C be games and s : A ( B and t : B ( C be strategies. We define

s ‖ t = {s ∈ (MA +MB +MC)
∗ | s � A,B ∈ s and s � B,C ∈ s′}

s; t = {s � A,C | s ∈ s ‖ t}even

Lemma 1. [1, Proposition 2.4] Let s, s′ : A ( B and t, t′ : B ( C. If s w s′

and t w t′, then (s; t) w (s′; t′). ut

We define the category G of games and history-free strategies.

Objects Games.
Morphisms A morphism from A to B is an equivalence class [s] : A ( B.
Composition The composition of [s] : A ( B and [t] : B ( C is [s; t] : A ( C.
Identity Given a game A, idA : A ( A is defined by:

idA = {s ∈ P even
A(1)(A(2) | s � A(1) = s � A(2)}

where labels (1) and (2) are used to distinguish between different occurrences
of A.
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Well-definedness of composition is a consequence of Lemma 1.
The map ! on objects of G can be extended to a map on strategies. Let

s : A ( B be a strategy and fs : (MP
A +MO

B) ⇀ (MO
A +MP

B) be the partial
function that corresponds to s. Then the partial function f!s : (I ×MP

A + I ×
MO

B)⇀ (I ×MO
A + I ×MP

B) is defined by:

f!s( (ξ,m) ) = (ξ, fs(m)).

We defined !s = trace(f!s).

Lemma 2. ! is a functor, i.e. (1) s ≈ t implies !s ≈!t, and (2) (!s; !t) ≈!(s; t).

We define some strategies related to !. Let A be a game. We define a strategy
derA :!A ( A induced from the partial function f : (I ×MP + MO) ⇀ (I ×
MO +MP ) defined by:

f( (�,m) ) = m (if (�,m) ∈ I ×MP )
f(m) = (�,m) (if m ∈ MO)

and otherwise f is undefined. For a given game A, we define a strategy δA :
!A (!!A induced from the partial function f : (I × MP + I × (I × MO)) ⇀
(I ×MO + I × (I ×MP )) defined by:

f( (〈ξ, ζ〉,m) ) = (ξ, (ζ,m)) (if (〈ξ, ζ〉,m) ∈ I ×MP )
f( (ξ, (ζ,m)) ) = (〈ξ, ζ〉,m) (if (ξ, (ζ,m)) ∈ I × (I ×MO))

and otherwise f(m) is undefined.
Then (!, [der], [δ]) is a comonad [1, Proposition 2.12]. Let K!(G) be the co-

Kleisli category over the comonad (!, [der], [δ]), i.e. K!(G) is defined by:

Objects Games.
Morphisms A morphism [s] : A → B in K!(G) is a morphism [s] :!A ( B in

G.
Composition Let [s] : A → B and [t] : B → C in K!(G). Thus [s] :!A ( B and

[t] :!B ( C in G. Their composition [s]; [t] is defined by [δA; !s; t], illustrated
by:

!A
δA // !!A

!s // !B
t // C

where ·; · is the standard composition of strategies. For strategies s :!A ( B
and t :!B ( C, we define s; t as δA; !s; t.

Identity Given a game A, the identity in K!(G) is derA :!A ( A in G.

Then K!(G) is a Cartesian closed category in which A&B is the Cartesian prod-
uct and !A ( B is the function space. For more detail, see [1].

Lastly we define an operation that we call the application. Let s : !A (!B (
C and t : !A (!B. We write fs and gt for associated partial functions. We write

m
s7→ m′ (resp. m t7→ m′)

if fs = m′ (resp. gt(m) = m′). The application s@t :!A ( C is a strategy induced
by the partial function h : (I ×MP

A +MO
C )⇀ (I ×MO

A +MP
C ) defined by:
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– h(m) = m′ for m ∈ MO
C , if there exists a sequence

m
s7→ n1

t7→ n2
s7→ · · · t7→ nk

s7→ m′ ∈ MP
C .

– h(m) = (l · ξ′, m′) for m ∈ MO
C , if there exists a sequence

m
s7→ n1

t7→ n2
s7→ · · · t7→ nk

s7→ (ξ′,m′) ∈ I ×MO
A .

– h(m) = (r · ξ′, m′) for m ∈ MO
C , if there exists a sequence

m
s7→ n1

t7→ n2
s7→ · · · s7→ nk

t7→ (ξ′,m′) ∈ I ×MO
A .

– h( (l · ξ, m) ) = m′ for (l · ξ, m) ∈ I ×MP
A, if there exists a sequence

(ξ,m)
s7→ n1

t7→ n2
s7→ · · · t7→ nk

s7→ m′ ∈ MP
C .

– h( (l · ξ, m) ) = (l · ξ′, m′) for (l · ξ, m) ∈ I ×MP
A, if there exists a sequence

(ξ,m)
s7→ n1

t7→ n2
s7→ · · · t7→ nk

s7→ (ξ′,m′) ∈ I ×MO
A .

– h( (l · ξ, m) ) = (r · ξ′, m′) for (l · ξ, m) ∈ I ×MP
A, if there exists a sequence

(ξ,m)
s7→ n1

t7→ n2
s7→ · · · s7→ nk

t7→ (ξ′,m′) ∈ I ×MO
A .

– h( (r · ξ, m) ) = m′ for (r · ξ, m) ∈ I ×MP
A, if there exists a sequence

(ξ,m)
t7→ n1

s7→ n2
t7→ · · · t7→ nk

s7→ m′ ∈ MP
C .

– h( (r · ξ, m) ) = (l · ξ′, m′) for (r · ξ, m) ∈ I ×MP
A, if there exists a sequence

(ξ,m)
t7→ n1

s7→ n2
t7→ · · · t7→ nk

s7→ (ξ′,m′) ∈ I ×MO
A .

– h( (r · ξ, m) ) = (r · ξ′, m′) for (r · ξ, m) ∈ I×MP
A, if there exists a sequence

(ξ,m)
t7→ n1

s7→ n2
t7→ · · · s7→ nk

t7→ (ξ′,m′) ∈ I ×MO
A .

The application operation here coincides with the standard interpretation of
the application in the Cartesian closed category by the following lemma.

Lemma 3. Let s : !A (!B ( C and t : !A ( B. Thus s : A −→ (!B ( C) and
t : A −→ B in K!(G). Then

s@(der; !t) ∈ (〈[s], [t]〉; eval) : !A ( C

where 〈·, ·〉 is the paring and eval be the evaluation map associated with the
Cartesian closed category. ut
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B Game Semantic Interpretation of Recursion Schemes

We give an interpretation of recursion schemes in AJM game model. Sorts are
interpreted as games and terms are interpreted as strategies in games determined
by their sorts. The interpretation given in this section is almost the same as
the standard interpretation of simply-typed lambda calculus (with recursion) in
the Cartesian closed category K!(G). The only difference is the domain of the
interpretation of terms. In the standard interpretation, a term is interpreted as
a morphism of the category, i.e. an equivalence class of strategies in this setting,
whereas in the interpretation in this section, a terms is interpreted as a strategy.

Let G = (Σ,N ,R, S) be a recursion scheme. Given non-terminal F ∈ N such
that R(F ) = λx1 . . . xk.M , a set fv(R(F )) ⊆ Σ∪N is defined by fv(M)\{x1, . . . , xk}.
We say G is loop-free if there exists a partial order � on N that satisfies
∀F ∈ N . ∀F ′ ∈ fv(R(F )). F ′ ≺ F (here F ′ ≺ F if and only if F ′ � F
and F ′ 6= F ). There is a one-to-one correspondence between loop-free recur-
sion schemes and simply-typed lambda terms in η-long form.

We first give the interpretation of the base sort o, written O. The game
O is defined as (M, λ, P,≈,`), where M = {o}, λ(o) = O, P = {ε, o}, ≈=
{(ε, ε), (o, o)} and `= { }. The interpretation of sorts are given by:

〈|o|〉 = O

〈|A→ B|〉 = !〈|A|〉 ( 〈|B|〉
〈|A1, . . . , An ` B|〉 = !〈|A1|〉 ⊗ · · · ⊗!〈|An|〉 ( 〈|B|〉

To define the interpretation of terms, we give some operations on strategies.
Every strategy s : Ai ( B can be regarded as a strategy of A1⊗A2⊗· · ·⊗Ak (
B (here k ≥ i), which we write as WeakenA1⊗A2⊗···⊗Ak(B(s). Every strategy
s : A⊗B1⊗· · ·⊗Bk ( C can be regarded as a strategy of A ( (B1 ( (B2 (
· · · ( (Bk ( C))), which we write as ΛB1,...,Bk

(s).
Let G be a loop-free recursion scheme. The interpretation of a term M that

possible contains non-terminals of G is given by:

〈|ã ::Ã, x̃ ::B̃ ` ai ::Ai|〉 = Weaken〈|Ã,B̃`Ai|〉(der〈|Ai|〉)

〈|ã ::Ã, x̃ ::B̃ ` xi ::Bi|〉 = Weaken〈|Ã,B̃`Bi|〉(der〈|Bi|〉)

〈|ã ::Ã, x̃ ::B̃ `M N ::C|〉 = 〈|ã ::Ã, x̃ ::B̃ `M ::D → C|〉@〈|ã ::Ã, x̃ ::B̃ ` N ::D|〉
〈|ã ::Ã, x̃ ::B̃ ` F ::C|〉 = Weaken〈|Ã,B̃`C|〉(Λ〈|D1|〉,...,〈|Dk|〉(〈|x̃ :: Ã, ỹ ::D̃ `M :: o|〉))(

C = D1 → D2 → · · · → Dk → o
R(F ) = λy1 . . . yk.M

)
Note that the inductive definition above is well-defined because the recursion
scheme is loop-free.

For a recursion scheme that is not necessarily loop-free, its interpretation is
defined as the union of its loop-free approximations. A recursion scheme is ap-
proximated by a loop-free recursion scheme with an additional term constructor

28



Ω of sort o that means divergence. The interpretation of Ω is given by:

〈|ã ::Ã, x̃ ::B̃ ` Ω ::o|〉 = Ω〈|Ã,B̃`o|〉

where ΩA = { } for every game A.

Definition 7 (Loop-free approximation). Let G = (Σ,N ,R, S) be a re-
cursion scheme and suppose N = {F1, F2, . . . , Fn}. For every natural num-
ber k, we define N [k] as the set of variables {Fi

[k] | Fi ∈ N} and M [k] =

M [F1
[k]/F1, . . . , Fn

[k]/Fn]. The loop-free recursion scheme G[k] is defined by
G[k] = (Σ,

⋃
0≤j≤k N [k],R′, S[k]), where R′ is given by:

– R′(Fi
[0]) = λx̃.Ω.

– R′(Fi
[j+1]) = λx̃.M [j] if R(F ) = λx̃.M . ut

For a term M that possibly contains non-terminals of G, its approximation
M [k] is a term M [F1

[k]/F1, . . . , Fn
[k]/Fn] that contains non-terminals of G[k].

Definition 8 (Interpretation of Recursion Schemes). Let G be a recursion
scheme and M be a term possibly containing non-terminals of G. We define
〈|M |〉rec =

⋃
k∈N〈|M [k]|〉. ut

A recursion scheme G = (Σ,N ,R, S) is interpreted as the strategy 〈|S|〉rec.
We define 〈|G|〉 = 〈|S|〉rec. The value tree of G can be constructed from 〈|S|〉rec as
follows.

Assume Σ = {ai :: Ai | 1 ≤ i ≤ k}, where

Ai = o→ · · · → o︸ ︷︷ ︸
arity(ai)

→ o.

Let

Ai = 〈|Ai|〉 =!Oi,1 (!Oi,2 ( · · · (!Oi,arity(ai) → Oi

where Oi,j (resp. Oi) is the game same as O except that its unique move is
named oi,j (resp. oi). Then 〈|S|〉rec is a strategy for game !A1 ⊗ · · ·⊗!Ak ( Oε,
whose O- and P-moves are given by:

MO = {oε}
∪ I × (I × {o1,j | 1 ≤ j ≤ arity(a1)})
∪ I × (I × {o2,j | 1 ≤ j ≤ arity(a2)})
...
∪ I × (I × {ok,j | 1 ≤ j ≤ arity(ak)})

MP = I × {oi | 1 ≤ i ≤ k}
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Intuitively MP corresponds to nodes in the tree and MO to queries to the
tree: oε asks what is the root node, and (ξ, (�, oi,j)) asks what is the jth child of
the node (ξ, oi). We formalise this idea. Let f be the partial function that induces
〈|S|〉rec. Recall that a Σ-labelled tree is a partial function from {1, 2, . . . ,K}
to Σ, where K = max1≤i≤k arity(ai). We first define a partial function T̂f :
{1, 2, . . . ,K}∗ ⇀ MP , and then construct a tree Tf : {1, 2, . . . ,K}∗ ⇀ Σ. The
partial function T̂f is inductively defined by:

T̂f (ε) = f(oε)

T̂f (p · d) = f( (ξ, (�, oi,d)) ) if T̂f (p) = (ξ, oi) and 1 ≤ d ≤ arity(ai).

The tree Tf is defined by:

Tf (p) = ai if and only if T̂f (p) = (ξ, oi) for some ξ.

Lemma 4. Let s and t be strategies for 〈|Σ ` o|〉, and f and g be corresponding
partial functions. If s ≈ t, then Tf = Tg.

Proof. Let p = d1d2 . . . dn ∈ {1, 2, . . . ,K}∗ and assume that T̂f (p) = (ξn, oin).
By definition of T̂f , we know that

s = oε · (ξ0, oi0) · (ξ0, (�, oi0,d1)) · (ξ1, oi1) · · · · · (ξn−1, (�, oin−1,dn)) · (ξ, oin) ∈ s

for some ξν and iν (1 ≤ ν < n). Then by induction on n, one can prove that

t = oε · (ζ0, oj0) · (ζ0, (�, oj0,d1)) · (ζ1, oj1) · · · · · (ζn−1, (�, ojn−1,dn)) · (ζ, ojn) ∈ t

for some ζν and jν (1 ≤ ν ≤ n) such that s ≈ t. Since s ≈ t, iν = jν for every ν
(1 ≤ ν ≤ n). Thus Tf (p) = Tg(p) = ain . ut

Lemma 5. Let G be a recursion scheme, M be a term that possibly contains
non-terminals of G, f be the partial function that induces 〈|M |〉rec, and p ∈
{1, 2, . . . ,K}∗, where K = max1≤i≤k arity(ai). If (M⊥)(p) = ai 6= ⊥, then
Tf (p) = ai.

Proof. By induction on p. ut

The tree constructed from the strategy 〈|S|〉rec is the value tree.

Theorem 7. Let G = (Σ,N ,R, S) be a recursion scheme and f be the partial
function that induces 〈|S|〉rec. Then [[G]] = Tf .

Proof. Let p ∈ {1, 2, . . . ,K}∗, where K = max1≤i≤k arity(ai). Suppose that
[[G]](p) = ai. As we have seen in Section 2, we can assume without loss of gener-
ality that ai 6= ⊥. By definition, S −→∗

G M for some M such that (M⊥)(p) = ai.
Let g be the partial function that induces 〈|M |〉rec. Then we have Tg(p) = ai
by Lemma 5. Because K!(G) is Cartesian closed, S −→∗

G M implies 〈|S|〉rec ≈
〈|M |〉rec. Thus by Lemma 4, we have Tf (p) = ai as desired. ut
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For a given set of moves M, its colouring is a partial function from M to
Q. Colouring can be represented by a set of colour assignments to moves m : q,
e.g. {m1 : q1,m2 : q2, . . . } where mi 6= mj if i 6= j. Let s : 〈|Σ ` o|〉 be a strategy
representing a tree, f be the partial function that induces s, and θ = {m1 :
q1,m2 : q2, . . . } be colouring. We say a pair (s, θ) respects the transition relation
δ, written δ � (s, θ), if

1. for every m : q ∈ θ, we have f(m) : q ∈ θ, and
2. for every (ξ, oi) : q ∈ θ and (ξ, (�, oi,d)) : qd ∈ θ (1 ≤ d ≤ arity(ai)), we have

(q, ai, q1q2 . . . qarity(ai)) ∈ δ.

Lemma 6. Let G be a recursion scheme and A be a trivial tree automaton. Then
[[G]] is accepted by A if and only if there exists colouring θ such that δ � (〈|G|〉, θ).

Proof. Easy. ut

We write δ � ♦(s, θ) if there exists θ′ ⊇ θ such that δ � (s, θ′). Let θ0 =
{oε : q0, f(oε) : q0}. A sequence θ0 ⊆ θ1 ⊆ · · · ⊆ θi ⊆ · · · of colouring is
fair if for every (ξ, oj) : q ∈ θi and d such that 1 ≤ d ≤ arity(aj), there
exists i′ such that (ξ, (�, oj,d)) : qd ∈ θi′ . We say colouring θ is well-justified if
dom(θ) = {m | ∃q. m : q ∈ θ} is well-justified.

Lemma 7. Let G be a recursion scheme and A be a trivial tree automaton. Then
[[G]] is accepted by A if and only if there exists a (possibly infinite) fair sequence
θ0 ⊆ θ1 ⊆ · · · ⊆ θi ⊆ · · · of well-justified colouring that satisfies that δ � ♦(s, θi)
for every i and that θi+1\θi contains an O-move and a P-move for every i.

Proof. (⇒) Suppose that [[G]] is accepted by A. Let f be the partial function
that induces 〈|G|〉. Then by Lemma 6, there exists θ such that δ � (〈|G|〉, θ). We
define a sequence θ0 ⊆ · · · ⊆ θi ⊆ · · · such that θi ⊆ θ for every i by induction
on i. We define θ0 = {oε : q0, f(oε) : q0} ⊆ θ. Suppose that θi is given. Let O
be the set of all O-moves of the form (ξ, (�, oi,d)) that is justified by a move in
dom(θi) and not contained by dom(θi). If O is empty, then θi is the last element
of the sequence. If not, let m ∈ O. Since δ � (〈|G|〉, θ) and m ∈ θi ⊆ θ, we know
that m : q ∈ θ for some q. Then θi+1 is defined by θi ∪ {m : q, f(m) : q}. Then
the sequence satisfies the requirement.

(⇐) Suppose that there exists a sequence θ0 ⊆ · · · ⊆ θi ⊆ · · · that satisfies
the requirement. Let θ =

⋃
i θi. Then θ satisfies the requirement of Lemma 6,

and thus [[G]] is accepted by A. ut

C System.: Yet Another Rigid Intersection Type System

Here we introduce yet another rigid intersection type system, called System.,
that has more direct connection to game semantics than the rigid type system
in Section 3.

The syntax of types and intersections are give by:

Types τ, σ ::= q | α→ τ
Intersections α, β ::=

d
{(ξ, τξ) | ξ ∈ X}
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where X ⊆ I. We often write
d

ξ∈X(ξ, τξ) for
d
{(ξ, τξ) | ξ ∈ X}. The inter-

section
d

ξ∈X(ξ, τξ) means the indexed intersection of τξ. The equivalence on
intersections is defined byl

ξ∈X

(ξ, τξ) =
l
ζ∈Y

(ζ, σζ) iff X = Y and ∀ξ ∈ X. τξ = σξ.

This can be considered as a variant of rigid intersections, since indexes are sig-
nificant, e.g.l

ξ∈{l·�}

(ξ, τξ) 6=
l

ζ∈{r·�}

(ζ, σζ)

even if τl·� = σr·�. Note that, unlike the rigid type system in Section 3, types
and intersections are completely separated.

An intersection
d

ξ∈X(ξ, τξ) can be represented by a partial function from
indexes to types that is defined on X and maps ξ to τξ. For notational conve-
nience, we introduce a symbol • that means undefined type of sort A. We write
(ζ, •) ∈ {(ξ, τξ) | ξ ∈ X} if ζ /∈ X. Then an intersection can be represented by a
partial function from indexes to the union of types and {•}. When we allow τξ to
be •, an intersection

d
ξ∈X(ξ, τξ) can be written as

d
ξ∈I(ξ, σξ), where σξ = τξ

if ξ ∈ X and σξ = • if ξ /∈ X. We simply write
d

ξ(ξ, τξ) for
d

ξ∈X(ξ, τξ). We
define the empty intersection � by � =

d
ξ(ξ, •).

Now the sorting relations are divided into two kinds of judgements, τA for
a type τ and a sort A, and α :: !A for an intersection α and a sort A. Here the
notation !A comes from the interpretation of the intuitionistic implication → in
the linear logic: A → B = !A ( B. The sorting relations are defined by the
following rules:

q :: o
α :: !A τ :: B
α→ τ :: A→ B

τξ :: A (∀ξ ∈ X)d
ξ∈X(ξ, τξ) :: !A .

By definition, u{ } :: !A for every sort A. We sometimes write τA and αA to
make clear that τ and α are types and intersections of sort A.

The definition of type environments is similar to the one in Section 3, i.e.
a finite set of binding {x1 : α1, . . . , xn : αn}. In the following, we implicitly
assume well-sortedness of type environments, i.e. xA : α ∈ Γ implies α :: !A.
We define dom(Γ ) and Γ (x) in the same way as in Section 3, except that if
x /∈ dom(Γ ), then Γ (x) =

d
{ } (=

d
ξ∈{ }(ξ, τξ) ). An important operation on

type environments is indexed product. Let X ⊆ I be a subset of indexes and Γξ

be type environment for every ξ ∈ X. Then
d

ξ∈X(ξ, Γξ) is defined by( l
ξ∈X

(ξ, Γξ)
)
(x) =

l{(
〈ξ, ζ〉, τζ

) ∣∣∣ Γξ(x) =
l
ζ∈Yξ

(ζ, τζ) and ζ ∈ Yξ

}
.

For two intersections, their rigid intersection is defined by

(
l
ξ∈X

(ξ, τξ)) C (
l
ζ∈Y

(ζ, σζ)) =
l(

{(l·ξ, τξ) | ξ ∈ X} ∪ {(r ·ζ, σζ) | ζ ∈ Y }
)
.
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The rigid intersection on type environments is defined by point-wise intersection,
i.e.

(Γ C∆)(x) = Γ (x) C∆(x).

Type judgements are also divided into two kinds, type judgements Γ `M : τ
and intersection judgements Γ `M : α, similar to sorting relations. Typing rules
are listed as follows:

Γ, x̃ : α̃ `M : q

Γ ` F : α̃→ q
[R(F ) = λx̃.Mo]

†
x :

d
{(�, τ)} ` x : τ

[x :: A and τ :: A]

Γ `M : α→ τ ∆ ` N : α
Γ C∆ `M N : τ

Γξ `M : τξ (∀ξ ∈ X)d
ξ∈X(ξ, Γξ) `M :

d
ξ∈X(ξ, τξ)

♦
{ } `M : •.

Note here that Ω has no typing rule. Thus Γ ` Ω : τ is not derivable for any Γ
and τ .

We then introduce the extension relation, incomplete typing rules and in-
complete judgements as in Section 3.3. The extension relations are defined by
the following rules. Here X ∈ {P,O} and O = P and P = O.

•A1→...→An→q CO u{ }A1 → . . .→u{ }An → q

β CX β′

α→ β CX α→ β′
αCX α′

α→ β CX α′ → β

ζ ∈ X τζ CX σζ τξ = σξ (∀ξ ∈ X\{ζ})d
ξ∈X(ξ, τξ)CX

d
ξ∈X(ξ, σξ)

ζ /∈ X •COσζ τξ = σξ (∀ξ ∈ X)d
ξ∈X(ξ, τξ)CO

d
ξ∈X∪{ζ}(ξ, σξ)

The extension relation Γ CX Γ ′ is defined as there exists x such that Γ (x) CX

Γ ′(x) and Γ (y) = Γ ′(y) for every y 6= x. We define the extension relation
Γ `M : τ CX Γ ′ `M : τ ′ on type judgements as either (1) Γ = Γ ′ and τ CX τ ′,
or (2) Γ CX Γ ′ and τ = τ ′. The extension relation on intersection judgements is
defined in the same way.

The incomplete typing rules are shown in Fig. 14. The derivation rewriting
rules are shown in Fig. 15 and Fig. 16. Note that the incomplete derivation

♦
{ } ` Ω : q

does not have any successor. Conversely every incomplete derivations except for
the above one has a unique successor.
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(O-Var1-Y)
†

x :
d
{(�, τ)} ` x : τ ′ N [τ CO τ ′]

(O-Var2-Y)
†

x :
d
{(�, τ ′)} ` x : τ N [τ CP τ

′]

(O-♦-Y)
♦

{ } `M : τ N [•CO τ ]

(O-Fun-Y)
Γ, x̃ : α̃ `M : q

Γ ′ ` F : α̃′ → q′ N

[
R(F ) = λx̃.Mo

Γ ` F : α̃→ q CO Γ ′ ` F : α̃′ → q′

]

(P-Fun-Y)
Γ ′, x̃ : α̃′ `M : q′ H

Γ ` F : α̃→ τ

[
R(F ) = λx̃.Mo

Γ, x̃ : α̃ `M : q CP Γ ′, x̃ : α̃′ `M : q′

]
(O-App-Y) Γ `M : α→ τ ∆ ` N : α

Γ ′ C∆′ `M N : τ ′ N

[
Γ C∆ `M N : τ

CO Γ ′ C∆′ `M N : τ ′

]
(P-AppL-Y) Γ ′ `M : α′ → τ ′ H ∆ ` N : α

Γ C∆ `M N : τ

[
Γ `M : α→ τ

CP Γ ′ `M : α′ → τ ′

]
(P-AppR-Y) Γ `M : α→ τ ∆′ ` N : α′ H

Γ C∆ `M N : τ
[∆ ` N : α CP ∆′ ` N : α′]

(O-Int-Y)
Γ ′
ζ `M : τ ′ζ Γξ `M : τξ (∀ξ 6= ζ)d

ξ(ξ, Γξ) `M :
d

ξ(ξ, τξ)

[
Γ ′
ζ `M : τ ′ζ CO Γζ `M : τζ

]
(P-Int-Y)

Γ ′
ζ `M : τ ′ζ Γξ `M : τξ (∀ξ 6= ζ)d

ξ(ξ, Γξ) `M :
d

ξ(ξ, τξ)

[
Γζ `M : τζ CP Γ ′

ζ `M : τ ′ζ
]

Fig. 14. Incomplete typing rules
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(Var1-Y)
†

x :
d
{(�, τ)} ` x : τ ′ N −→

†
x :

d
{(�, τ ′)} ` x : τ ′ H

[τ CO τ ′]

(Var2-Y)
†

x :
d
{(�, τ ′)} ` x : τ N −→

†
x :

d
{(�, τ ′)} ` x : τ ′ H

[τ CP τ
′]

(NFun-Y)
Γ, x̃ : α̃ `M : q

Γ ′ ` F : α̃′ → q′ N −→
Γ ′, x̃ : α̃′ `M : q′ N
Γ ′ ` F : α̃′ → q′

(HFun-Y)
Γ ′, x̃ : α̃′ `M : q′ H

Γ ` F : α̃→ q
−→

Γ ′, x̃ : α̃′ `M : q′

Γ ′ ` F : α̃′ → q′ H

(NApp1-Y) Γ `M : α→ τ ∆ ` N : α

Γ ′ C∆ `M N : τ ′ N −→ Γ ′ `M : α→ τ ′ N ∆ ` N : α

Γ ′ C∆ `M N : τ ′

(NApp2-Y) Γ `M : α→ τ ∆ ` N : α

Γ C∆′ `M N : τ N −→ Γ `M : α→ τ ∆′ ` N : α N
Γ C∆′ `M N : τ

(HApp1-Y) Γ ′ `M : α→ τ ′ H ∆ ` N : α

Γ C∆ `M N : τ
−→ Γ ′ `M : α→ τ ′ ∆ ` N : α

Γ ′ C∆ `M N : τ ′ H

(HApp2-Y) Γ `M : α′ → τ H ∆ ` N : α

Γ C∆ `M N : τ
−→ Γ `M : α′ → τ ∆ ` N : α′ N

Γ C∆ `M N : τ

(HApp3-Y) Γ `M : α→ τ ∆′ ` N : α H
Γ C∆ `M N : τ

−→ Γ `M : α→ τ ∆′ ` N : α

Γ C∆′ `M N : τ H

(HApp4-Y) Γ `M : α→ τ ∆ ` N : α′ H
Γ C∆ `M N : τ

−→ Γ `M : α′ → τ N ∆ ` N : α′

Γ C∆′ `M N : τ

(NInt-Y)
Γ ′
ζ `M : τ ′ζ Γξ `M : τξ (∀ξ 6= ζ)d

ξ(ξ, Γξ) `M :
d

ξ(ξ, τξ)
N −→

Γζ `M : τζ N Γξ `M : τξ (∀ξ 6= ζ)d
ξ(ξ, Γξ) `M :

d
ξ(ξ, τξ)

(HInt-Y)
Γ ′
ζ `M : τ ′ζ H Γξ `M : τξ (∀ξ 6= ζ)d

ξ(ξ, Γξ) `M :
d

ξ(ξ, τξ)
−→

Γζ `M : τζ Γξ `M : τξ (∀ξ 6= ζ)d
ξ(ξ,∆ξ) `M :

d
ξ(ξ, σξ) H(

∆ξ = Γξ (if ξ 6= ζ), Γ ′
ζ (if ξ = ζ)

σξ = τξ (if ξ 6= ζ), τ ′ζ (if ξ = ζ)

)
Fig. 15. Derivation rewriting rules in System. (part 1)
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(N-♦1)
♦

{ } ` x : τ N −→
†

x :
d
{(�, τ)} ` x : τ H

(N-♦2)
♦

{ } ` F : �̃ → q N −→

♦
{ } `M : q N

{ } ` F : �̃ → q
[R(F ) = λx1 . . . xn.M

o]

(N-♦3)
♦

∅ `M N : τ N −→

♦
∅ `M : � → τ N

♦
{ } ` N : �

∅ `M N : τ

Fig. 16. Derivation rewriting rules in System. (part 2)

D Relation between System. and Game Semantics

This section gives a connection between System. and AJM game model. We
interpret intersection types and judgements as a colouring. By this interpreta-
tion, O-extension (resp. P-extension) on types corresponds to adding an O-move
(resp. a P-move) to the domain of the colouring. Then the derivation rewriting
system induces a function from O-moves to P-moves, that coincides with the
partial function determined by the strategy.

We define the map $ from types and intersections to colouring, i.e. sets of
the form {m1 : q1, . . . ,mk : qk} where m1, . . . ,mk are pairwise distinct moves.
The images of $ can be described more precisely:

– dom($(τ)) ⊆ M〈|A|〉 for τ :: A, and
– dom($(α)) ⊆ M〈|!A|〉 for α :: !A.

The map $ is defined by induction on the structure of sorts as follows:

$(q) = {o : q}
$(•) = { }

$(α→ τ) = $(α) ]$(τ)(
Here ] is the disjoint union associated with
M〈|A→B|〉 = M〈|!A(B|〉 = M〈|!A|〉 +M〈|B|〉.

)
$
( l

ξ∈X

(ξ, τξ)
)
=

⋃
ξ∈X

{(ξ,m) : q | m : q ∈ $(τξ)}.

Lemma 8. The map $ gives a bijective correspondence between types of sort
A and non-empty and well-justified subsets of moves in 〈|A|〉 with colouring.
Similarly, $ gives a bijective correspondence between intersections α of sort !A
and (possibly empty) well-justified subsets of moves in 〈|!A|〉 with colouring.
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Proof. By mutual induction on the structure of types and intersections, we can
prove that the images of $ are compatible and well-justified. The injectivity
of $ can also be proved by (mutual) induction on the structure of types and
intersection. The surjectivity of $ can be proved by induction on the structure
of sorts, in which we use induction on the derivation of compatibility of indexes
for the case !A. ut

Let Z ∈ {P,O}. The following lemma shows that Z-extension is equivalent
to adding a Z-move.

Lemma 9. Let Z ∈ {P,O} and τ and τ ′ be types of the same sort A. Then
τ CZ τ

′ if and only if there exists a Z-move m such that m /∈ dom($(τ)) and
$(τ) ∪ {m : q} = $(τ ′) for some q. Similar statements hold for intersections.

Proof. (⇒) By mutual induction on the derivation of τ CO τ
′, τ CP τ

′, αCO α
′

and αCP α
′.

(⇐) By induction on the structure of sorts. ut

The map $ can be extended to a map from judgements by

$({xi : αi | 1 ≤ i ≤ n} `M : τ) =
⊎

1≤i≤n

$(αi) ]$(τ)

$({xi : αi | 1 ≤ i ≤ n} `kC M : β) =
⊎

1≤i≤n

$(αi) ]$(β)

where ] means the disjoint union associated withM〈|A1,...,An`B|〉 = M〈|!A1|〉 +
· · ·+M〈|!An|〉+M〈|B|〉. Extension relations on judgements enjoy a property similar
to Lemma 9. Let Γ ` M : τ be a judgement and Γ ′ ` M : τ ′ be its extension.
The there exists m : q that satisfies a condition similar to Lemma 9. We write
(Γ ` M : τ) + (m : q) for Γ ′ ` M : τ ′. Notations (Γ ` M : α) + (m : q) and
(Γ `M : τ) + (m : q) + (m′ : q′) are defined in the same way.

For a given sorted term x̃ :: ã ` M :: B, we define a partial function r(M) :
MO

〈|Ã`B|〉
⇀MP

〈|Ã`B|〉
by r(M)(m) = m′ if and only if

D =

...
(Γ `M : τ) + (m : q) N −→∗

...
(Γ `M : τ) + (m : q) + (m′ : q′) H

for some judgement Γ ` M : τ and incomplete derivation D. Perhaps sur-
prisingly, r(M) is a well-defined partial function, i.e. m′ and q′ are determined
independently from the judgement Γ `M : τ and the derivation D.

Lemma 10. Let G be a recursion scheme and x̃ :: Ã ` M :: B be a term that
possibly contains non-terminals of G. Let D1 and D2 be complete derivations
whose conclusions are Γ1 ` M : τ1 and Γ2 ` M : τ2. Let m be an O-move in
〈|Ã ` B|〉 and q ∈ Q. Suppose that (Γ1 `M : τ1)+(m :q) and (Γ2 `M : τ2)+(m :
q) are well-defined. Then

D′
1 =

...
(Γ1 `M :τ1) + (m :q) N −→∗

...
(Γ1 `M :τ1) + (m :q) + (m′ :q′) H

= D′′
1
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for some D′′
1 if and only if

D′
2 =

...
(Γ2 `M :τ2) + (m :q) N −→∗

...
(Γ2 `M :τ2) + (m :q) + (m′ :q′) H

= D′′
2

for some D′′
2 . A similar statement holds for intersection judgements.

Proof. Both directions are equivalent. The claim can be proved by induction on
the length of −→∗ and case analysis on M .

IfM is a variable, say xi, then B = Ai. If Γ1 `M : τ1 is the empty judgement,
then m is the unique move m ∈ MO

〈|Ã`Ai|〉
such that ¬∃n. n `〈|Ã`Ai|〉 m and thus

Γ2 ` M : τ2 must also be the empty judgement, in which case the statement
trivially holds. We assume that D1 and D2 are non-empty. Thus

D′
1 =

†
(xi :

d
{(�, τ1)} ` xi :τ1) + (m :q) N

−→∗ †
(xi :

d
{(�, τ1)} ` xi :τ1) + (m :q) + (m′ :q′) H

= D′′
1

By definition, the justifier ofm is in$(xi :
d
{(�, τ1)} ` xi :τ1) = $(

d
{(�, τ1)})]

$(τ1). Assume the justifier is in $(τ1). Now the rewriting sequence is written
as

D′
1 =

†
xi :

d
{(�, τ1)} ` xi :τ ′1 N −→∗ †

xi :
d
{(�, τ ′1)} ` xi :τ ′1 H

= D′′
1

where τ ′1 is the unique type such that $(τ ′1) = $(τ1)∪{m : q}. So by definition,

$
(l

{ (�, τ ′1) }
)
= $

(l
{ (�, τ1) }

)
∪ { (�,m) : q }.

Therefore we know that m′ = (�,m). By a similar argument, we have

D′
2 =

†
(xi :

d
{(�, τ2)} ` xi :τ2) + (m :q) N

−→∗ †
(xi :

d
{(�, τ2)} ` xi :τ2) + (m :q) + ( (�,m) :q′) H

= D′′
2

as required. The other case can be proved in the same way.
Next we prove the case that M = M1 M2. Then the rewriting sequence can

be divided into three stages. Let us consider the following example in which
(1)−→
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means the rewriting at the first stage and so on.

...
Γ1`M1 :α1→τ1

...
∆1`M2 :α1

(Γ1 C∆1 `M1 M2 :τ1) + (m :q) N

(1)−→

...
(Γ1`M1 :α1→τ1)+(n1 :q) N

...
∆1`M2 :α1

(Γ1 C∆1 `M1 M2 :τ1) + (m :q)

(2)−→∗

...
(Γ1`M1 :α1→τ1)+(n1 :q1)+(n2 :q2) H

...
∆1`M2 :α1

(Γ1 C∆1 `M1 M2 :τ1) + (m :q)

(2)−→

...
(Γ1`M1 :α1→τ1)+(n1 :q1)+(n2 :q2)

...
(∆1`M2 :α1)+(n2 :q2) N

(Γ1 C∆1 `M1 M2 :τ1) + (m :q)

(2)−→∗

...
(Γ1`M1 :α1→τ1)+(n1 :q1)+(n2 :q2)

...
(∆1`M2 :α1)+(n2 :q2)+(n3 :q3) H

(Γ1 C∆1 `M1 M2 :τ1) + (m :q)

(2)−→

...
(Γ1`M1 :α1→τ1)+(n1 :q1)+(n2 :q2)+(n3 :q3) N

...
(∆1`M2 :α1)+(n2 :q2)+(n3 :q3)

(Γ1 C∆1 `M1 M2 :τ1) + (m :q)
...

(2)−→∗

...
(Γ1`M1 :α1→τ1)+(n1 :q1)+. . .+(n2k+1 :q2k+1) H

...
(∆1`M2 :α1)+(n2 :q2)+· · ·+(n2k :q2k)

(Γ1 C∆1 `M1 M2 :τ1) + (m :q)

(3)−→

...
(Γ1`M1 :α1→τ1)+(n1 :q1)+. . .+(n2k+1 :q2k+1)

...
(∆1`M2 :α1)+(n2 :q2)+· · ·+(n2k :q2k)

(Γ1 C∆1 `M1 M2 :τ1) + (m :q) + (m′ :q′) H
= D′′

1

In the first stage, the update (m : q) is propagated to either M1 or M2. We
can prove that n1 is determined by m in the same way as in the case that
M = x. In the second stage, M1 and M2 interact by updating α1. Here by the
induction hypothesis, we know that nk is determined by nk−1 independently
from the derivations and the judgements. In the third stage, the last update
((n2k+1 : q2k+1) in the above example) is propagated to M . One can prove that
m′ is determined by the last update. Therefore the rewriting sequence starting
from D′

2 must have the same decomposition.
The case M = F can be proved similarly. ut

Thanks to Lemma 10, we know that r(M) is a well-defined partial function
for every M . Now we give the connection between System. and AJM’s game
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model. Although it is natural to expect that r(M) = Fun(〈|M |〉), unfortunately,
this statement is a bit too strong and the domain of r(M) may be a proper
subset of that of Fun(〈|M |〉), because the definition of r(M) restricts the domain
of r(M) to be included by

{m ∈ MO | ∃Γ, τ, q. Γ `M : τ and (Γ `M : τ) + (m : q) is defined}.

We write the above set of O-moves as RwDom(M). We prove that the restriction
of Fun(〈|M |〉) to RwDom(M) (written as Fun(〈|M |〉) � RwDom(M)) is equivalent
to r(M).

Lemma 11. Let G be a loop-free recursion scheme and M be a term that possibly
contains non-terminals of G. Then r(M) = Fun(〈|M |〉) � RwDom(M).

Proof. By induction on the structure of M . ut

The same proposition holds for recursion schemes that are not necessarily
loop-free. We need an auxiliary lemma that relates the rewriting of derivations
for M and those for M [k]. For partial functions f, g : Y ⇀ Z, we write f ≤ g if
f(x) = y implies g(x) = y for every x (or equivalently, if dom(f) ⊆ dom(g) and
f(x) = g(x) for every x ∈ dom(f)). For an infinite increasing chain of partial
functions fi : Y ⇀ Z (i ≥ 0), its limit

⊔
i≥0 fi is defined by:

(
⊔
i≥0

fi)(x) =

{
y (∃k ≥ 0. fk(x) is defined and fk(x) = y)
undefined (otherwise)

Lemma 12. Let G be a recursion scheme and M be a term that possibly contains
non-terminals of G. Then r(M [i]) is an infinite increasing chain and r(M) =⊔

i≥0 r(M
[i]).

Proof. Let D be a (complete or incomplete) derivation of Γ `M [k] : τ and i ≥ 0
be an integer. We write D[+i] for the derivation obtained by replacement of all
occurrences of F [k′] in D with F [k′+i]. Then we can prove that D[+i] is a valid
derivation of Γ ` F [k] : τ and D −→ D′ implies D[+i] −→ D′[+i], by induction on
k and M (in other words, on the structure of M [k]). Thus r(M [k]) ≤ r(M [k+i])
for every k, i ≥ 0.

Similarly for a given derivation D of Γ ` M [k] : τ , we define D[+∞] as
the one obtained by replacing all occurrences of F [k′] with F . Then D[+∞] is
the derivation of Γ ` M : τ and D −→ D′ implies D[+∞] −→ D′[+∞]. So
r(M [k]) ≤ r(M) for every k, and thus

⊔
i≥0 r(M

[i]) ≤ r(M).
We show that r(M) ≤

⊔
i≥0 r(M

[i]). Let D be a derivation of Γ `M : τ . For
every k greater than the height of D, one can construct a derivation of Γ `M [k] :
τ by replacing each occurrence of F in D with F [k′] for some appropriate integer
k′ ≤ k. This derivation is written as D[↓k]. Then D −→ D′ implies D[↓k] −→ D′

[↓k]
for every k greater than the height of D′.
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Suppose that r(M)(m) = m′ for some O-move m and P-move m′. It suffices
to show that r(M [k])(m) = m′ for some k. By definition of r(M), we have

D =

...
(Γ `M : τ) + (m : q) N

−→∗
...

(Γ `M : τ) + (m : q) + (m′ : q′) H
= D′

for some Γ , τ , q and q′. Let k be an integer greater than the height of D′. Then
we have

D[k] =

...
(Γ `M [k] : τ) + (m : q) N

−→∗
...

(Γ `M [k] : τ) + (m : q) + (m′ : q′) H
= D′

[k].

and thus r(M [k])(m) = m′ as required. ut

Theorem 8. Let G be a recursion scheme and M be a term that possibly con-
tains non-terminals of G. Then r(M) = Fun(〈|M |〉rec) � RwDom(M).

Proof. Suppose x̃ :: Ã ` M :: B and let MO = MO
〈|Ã`B|〉

and MP = MP
〈|Ã`B|〉

.
For integers i, j ≥ 0, we define

fi,j = Fun(〈|M [i]|〉) � RwDom(M [j])

and Z = {fi,j | i, j ≥ 0}. Recall that the set of all partial functions of MO ⇀
MP is a complete partial order. Thus for every directed set Y , we have the least
upper bound of Y , written as

⊔
Y . Z is a directed set since i ≤ i′ and j ≤ j′

implies fi,j ≤ fi′,j′ . We prove that r(M) = f = Fun(〈|M |〉rec) � RwDom(M).
We prove r(M) = f . By Lemma 11, we have r(M [i]) = fi,i. So by Lemma 12,

r(M) =
⊔

{r(M [i]) | i ≥ 0} =
⊔

{fi,i | i ≥ 0}.

Let Y = {fi,i | i ≥ 0}. We know that
⊔
Y ≤

⊔
Z since Y ⊆ Z, and that⊔

Z ≤
⊔
Y since for every fi,j ∈ Z, we have fi,j ≤ fi+j,i+j ∈ Y .

We prove f = Fun(〈|M |〉rec) � RwDom(M). We have the following equation:

f =
⊔

{fi,j | i, j ≥ 0}

=
⊔

{
⊔

{fi,j | j ≥ 0} | i ≥ 0}

=
⊔

{Fun(〈|M [i]|〉) � RwDom(M) | i ≥ 0}
= Fun(〈|M |〉rec) � RwDom(M)

Here we use the facts (1) RwDom(M) =
⋃

i≥0 RwDom(M [i]), (2) · � · is contin-
uous in both arguments, and (3) Fun(·) is continuous. ut

Now we prove the counterpart of Theorem 3. Let Σ = {ai :: Ai}. For a given
type environment Θ, we write Θ :: Σ if a : α ∈ Θ implies a :: A ∈ Σ and
α :: !A. For a type τ :: Ai, we write δ � ai : τ if τ =

d
{(�, q1)} →

d
{(�, q2)} →

· · · →
d
{(�, qarity(ai))} → q and (q, ai, q1 . . . qarity(ai)) ∈ δ. We write δ � Θ
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if δ � a : τ for every a : τ ∈ Θ. We write δ � ♦Θ if there exists a sequence
Θ CP Θ1 CP . . . CP Θk such that δ � Θk. Let { } = Θ0 CO Θ1 CP Θ2 CO . . .
be a sequence of type environments such that Θi :: Σ for every i. We say the
sequence is fair if for every i, a and ζ, if a :

d
ξ∈X(ξ, τξ) ∈ Θi and τζ 6= •, then

there exists i′ > i such that a :
d

ξ∈X′(ξ, τ ′ξ) ∈ Θi′ where τ ′ξ =
d
{(�, q1)} →

· · · →
d
{(�, qarity(a))} → q.

Theorem 9. Let G be a recursion scheme and A be a trivial tree automaton.
Then [[G]] is accepted by A if and only if there exists a sequence of type environ-
ments

{ } = Θ0 CO Θ1 CP Θ2 CO Θ3 CP . . .

such that

Θ2i ` S : q0 −→∗ Θ2i+1 ` S : q0

for every i and (1) it is infinite and fair and satisfies δ � ♦Θi for every i, or (2)
it is finite and ends with a complete derivation of Θ ` S : q0 such that δ � Θ.

Proof. By the same construction as in the proof of Lemma 7. ut

E Proof of Theorem 2

Before proving Theorem 2, we prove some lemmas.

Lemma 13. If τ C σCP θ
′, then θ′ = τ ′ C σ′. If τ C σCO θ

′ and τ C σ 6= ∅, then
θ′ = τ ′ C σ′.

Proof. Easy induction on the derivation of τ C σ CP θ
′ and τ C σ CO θ′. ut

Lemma 14. Replacement of a conclusion in a complete typing rule with its O-
extension results in an O-rule. Similarly replacement of a premise in a complete
typing rule with its P-extension results in a P-rule.

Proof. By case analysis on the rule before the replacement. The most interesting
case is the replacement of the conclusion of the rule for intersections with its O-
extension. By the replacement, the left rule below becomes the right rule:

Γ `M : τ ∆ `M : σ
Γ C∆ `M : τ C σ Γ `M : τ ∆ `M : σ

Ξ ′ `M : θ′

where Γ C ∆ ` M : τ C σ CO Ξ ′ ` M : θ′. We need to prove that Ξ ′ and θ′

are intersections, i.e. Ξ ′ = Γ ′ C∆′ and θ′ = τ ′ C σ′ for some Γ ′, ∆′, τ ′ and σ′.
By definition of Γ C∆ `M : τ C σ CO Ξ ′ ` M : θ′, either (i) Γ C∆ = Ξ ′ and
τ CσCO θ

′, or (ii) Γ C∆CP Ξ
′ and τ Cσ = θ′. In case (i), by Lemma 13 and the

side condition τ C σ 6= ∅ of the rule for intersections, we have θ′ = τ ′ C σ′. Thus
by setting Γ ′ = Γ and ∆′ = ∆, the right rule above is an instance of (O-Int).
Case (ii) can be proved in the same way. ut
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Determinacy of the derivation rewriting system (i.e. D −→ D1 and D −→
D2 implies D1 = D2) is a consequence of the facts that (1) every incomplete
derivation contains exactly one instance of an incomplete typing rule, and (2)
for every instance of an incomplete typing rule, there exists exactly one rewriting
rule for it.

We prove progress (i.e. for every incomplete derivation D, there exists a
derivation D′ such that D −→ D′). As we have seen above, every incomplete
derivation has exactly one applicable rewriting rule. What we need to prove is
that the result of the rewriting is a valid (complete or incomplete) derivation.

We prove it by cases on the rule used to derive D −→ D′. Here we only show
the case that the rule is (NApp1) and other cases are omitted.

Suppose that D −→ D′ is derived by (NApp1). Then D is of the form

D =

...
Γ `M : α→ τ

(1)

...
∆ ` N : α

(2)

Γ ′ C∆ `M N : τ ′ N
(4)

(3)

....

and D′ is of the form

D′ =

...
Γ ′ `M : α→ τ ′ N (1′)

...
∆ ` N : α

(2′)

Γ ′ C∆ `M N : τ ′ (4′)
(3′)

....

.

Note that subderivations over rule (2) in D is equivalent to those over rule (2’)
in D′, subderivations over rule (1) is equivalent to those over rule (1’), and a
part of derivation under (4) is equivalent to that of under (4’). All of these parts
uses only complete typing rules, since D is an incomplete derivation using an
incomplete typing rule at (3). Thus it suffices to show that rule (3’) is a valid
complete rule and rule (1’) is a valid incomplete rule. Clearly (3’) is a valid
complete rule and we prove (1’) is a valid incomplete rule. Since (3) in D is an
instance of (O-App), we have Γ C ∆ ` M N : τ CO Γ ′ C ∆ ` M N : τ ′. By
definition, either (1) Γ CP Γ ′ and τ = τ ′; or (2) Γ = Γ ′ and τ CO τ ′. In both
cases, Γ `M : α→ τ CO Γ

′ `M : α→ τ ′. So by Lemma 14, rule (1’) is a valid
incomplete rule.

F Proof of Theorem 3

We have already proved the counterpart of Theorem 3 in System. (Theorem 9).
Here we reduce Theorem 3 to Theorem 9 by giving a partial function \ from
derivations in System. to those in the rigid type system that preserves the rewrit-
ing relation in a certain sense.
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A set I of sequences on {l, r} is compatible if elements in I are pairwise
incomparable, i.e. for every s, t ∈ I, neither s v t nor t v s, where v is the
prefix ordering. Let us consider types given by the following grammar:

Types τ, σ ::= q | α→ τ
Rigid Intersection α, β ::=

d
i∈I τi

where I is a compatible set of sequences on {l, r} and τi means the mapping
i 7→ τi that is defined on I. The types and intersections given by the above
syntax is “isomorphic” to those given by the syntax in Section 3, in the sense
that there exists a structure-preserving bijective correspondence ∼ defined by:l

i∈{ }

τi ∼ ∅

l
i∈{ε}

τi ∼ τ iff τε = τ

l
i∈I

τi ∼ α C β iff
l
i∈Il

τ li ∼ α and
l
i∈Ir

τ ri ∼ β

where I l = {j | l · j ∈ I},
Ir = {j | r · j ∈ I},
τ li = τl·i, and
τ ri = τr·i.

For example,l
i∈{lll,lr,rr}

τi ∼ ((τlll C ∅) C τlr) C (∅ C τrr).
We give a mapping from objects in System. to those in the rigid type system
through the above bijective correspondence.

The mapping \ is based on the mapping [ from indexes I in System. to
sequences of {l, r} defined inductively by

[(�) = ε

[(l · ξ) = l · [(ξ)
[(r · ξ) = r · [(ξ)

[(〈ξ1, ξ2〉) = [(ξ1) · [(ξ2).

Note that [ is not injective. For example,

[(〈l·�, r ·�〉) = [(〈l·r·�, �〉) = [(l·r ·�) = l · r.

We say a set X of indexes is compatible if (1) the restriction of [ to X is injective
(i.e. [(ξ1) = [(ξ2) implies ξ1 = ξ2 for every ξ1, ξ2 ∈ X), and (2) [(X) = {[(ξ) |
ξ ∈ X} is a compatible set of sequences on {l, r}.
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Then we define the partial mapping from types in System. to those in the
rigid type system by

\(q) = q

\(α→ τ) = \(α) → \(τ)

\(
l
ξ∈X

τξ) =
l

i∈[(X)

σi if X is compatible and ∀ξ ∈ X. \(τξ) = σ[(ξ).

The mapping \ is defined on types in which all index sets are compatible sets.
By generalising the mapping \, one can define \(Γ ) for type environments Γ in
System., \(J) for judgements J in System. and \(D) for derivations in System..
All of these mappings are defined on those in which all index sets are compatible
sets.

Lemma 15. Let D and D′ be derivations in System. and suppose that D −→ D′

and \(D) is well-defined. Then \(D′) is also well-defined and \(D) −→∗ \(D′) in
the rigid type system.

Proof. By induction on the structure of D and the case analysis on the rule used
to derive D −→ D′. In most cases, one step rewriting in System. corresponds to
one step rewriting in the rigid type system, except that the rule used to derive
D −→ D′ is related to

d
ξ∈X τξ. For example, if one uses the rule

Γ ′
ζ `M : τ ′ζ Γξ `M : τξ (∀ξ ∈ X\{ζ})d

ξ∈X〈ξ, Γξ〉 `M :
d

ξ∈X〈ξ, τξ〉 N

−→
Γζ `M : τζ N Γξ `M : τξ (∀ξ ∈ X\{ζ})d

ξ∈X〈ξ, Γξ〉 `M :
d

ξ∈X〈ξ, τξ〉 N

to derive D −→ D′ in System., then the corresponding rewriting sequence is
\(D) −→k \(D′) where k is the length of [(ζ). ut

So by induction on the length of the rewriting sequences Dinit −→∗ D in
System., we have \(Dinit) −→∗ \(D). Thus Theorem 3 is a consequence of The-
orem 9.

G Proof of Theorem 4

Before proving Theorem 4, we define an approximation G〈k〉 of the recursion
scheme G. The approximation G〈k〉 is similar to the loop-free approximation G[k]

(see Definition 7), except that G〈k〉 uses ⊥ where G[k] uses Ω (recall that Ω is a
special term meaning divergence and ⊥ is a distinguished terminal symbol).

Definition 9 (Approximation with ⊥). Let G = (Σ,N ,R, S) be a recursion
scheme and suppose N = {F1, . . . , Fn}. For every integer k, we define N 〈k〉 as
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the set of variables {Fi
〈k〉 | Fi ∈ N} and M 〈k〉 = M [F1

〈k〉/F1, . . . , Fn
〈k〉/Fn].

The recursion scheme G[k] is defined by G〈k〉 = (Σ⊥,
⋃

0≤j≤k N 〈k〉,R′, S〈k〉),
where R′ is given by:

– R′(Fi
〈0〉) = λx̃.⊥.

– R′(Fi
〈j+1〉) = λx̃.M 〈j〉 if R(F ) = λx̃.M . ut

The key observation to prove Theorem 4 is that an over-approximation of a
certificate can be constructed from a derivation for Θ ` S〈k〉 : q0 if k is large
enough. Specifically k must be greater than the number of all type bindings for
non-terminals, i.e. the number of elements in

{F : φ | FA ∈ N and φ :: A}.

Let k be the number that satisfies the above condition and fix it in the
following. Then model-checking of G is equivalent to model-checking of G〈k〉.

Theorem 10. Let G be a recursion scheme, A be a trivial automaton and k be
an integer that satisfies the above condition. Then [[G]] is accepted by A⊥ if and
only if [[G〈k〉]] is accepted by A⊥.

Proof. Let

Γ0 = {F : φ | FA ∈ N and φ :: A}

and

Γi+1 = ShrinkG,A(Γi).

Since ShrinkG,A(Γ ) ⊆ Γ for every Γ , we have a decreasing chain

Γ0 ⊇ Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γj ⊇ . . . .

Because k is the number of elements in Γ0, Γk is the greatest fixed-point of
ShrinkG,A. Thus by the argument in Section 2, the model-checking problem is
reduce to the problem to check if S : q0 ∈ Γk.

By induction on i, we can prove that F : φ ∈ Γi if and only if Θ ` (F 〈i〉,G〈i〉) :
(φ, Γ ) for some Γ and Θ such that δ⊥ � Θ, where δ⊥ is the transition relation of
A⊥. Hence S : q0 ∈ Γk if and only if Θ ` (S〈k〉, Γ 〈k〉) : (q0, Γ ) for some Γ and Θ
such that δ⊥ � Θ. The latter condition is equivalent to that [[Γ 〈k〉]] is accepted
by A⊥. ut

Moreover an over-approximation of a certificate can be constructed from the
derivation of Θ ` (S〈k〉,G〈k〉) : (q0, Γ ), given by

{F : φ | ∃i. F 〈i〉 : φ ∈ Γ}.

In the following lemma, we do the same thing using a derivation in the rigid
intersection type system, instead of one in the flexible intersection type system.
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Lemma 16. Let G be a recursion scheme, A be a trivial automaton and k be
a number that satisfies the condition above. Let D be a derivation of Θ ` S〈k〉 :
q0 in the rigid intersection type system such that δ⊥ � Θ. Let Γ be the type
environment in the flexible type system defined by:

Γ = {F : h(τ) | ∃∆. ∆ ` F 〈l〉 : τ appears in D for some l }

where h is a function from rigid intersection types to flexible intersection types
that replace C with ∧. Then Γ is an over-approximation of a certificate.

Proof. By the same idea as the proof of [13, Theorem 2(ii)]. ut

Now to prove Theorem 4, it suffices to show that the derivation of Θ ` S〈k〉 :
q0 is reachable from Dinit by the derivation rewriting system (here we ignore
the difference of labels, i.e. F is identified with F 〈l〉 for any l). A judgement of
the form ∆ ` F : τ is called a non-terminal judgement. For an occurrence of a
non-terminal judgement in a derivation, its depth is defined as the number of
non-terminal judgements appearing in the path from the root to the occurrence.
A derivation of Θ ` S〈k〉 : q0 is obtained in a way similar to that in the proof of
Theorem 3, except that we use (♦-GiveUp) rule when we reach a non-terminal
judgement of depth k.

H List of Abstraction Rules and Correctness

This section gives the list of all abstraction rules mentioned in Section 4 and
proves its correctness. Fix a recursion scheme G and a trivial tree automaton A.
We first define the abstraction function, and then the set Rules of all instances of
typing rules including incomplete typing rules by using the abstraction function.
The abstract rewriting relation V is a relation between P(Rules) and Rules
(here P(X) is the powerset of X).

Remark 3. The abstract rewriting relation V is somehow different from the rule
in Fig. 12, which describes a rule that should be satisfied by a desirable set D̂ of
instances of typing rules. Such a desirable set is defined as a fixed-point of V,
i.e. a set D̂ that satisfies ∀R.(D̂ V R implies R ∈ D̂). ut

We define the abstraction function h. The function h is a function from types
and intersections in the rigid type system to those in the flexible type system,
defined by the replacement of C with ∧. It is straightforward to extend h to
the function from type environments in the rigid type system to those in the
flexible type system by h(Γ ) = {x : h(τ) | x : τ ∈ Γ}, and to the function from
type judgements in the rigid type system to those in the flexible type system
by h(Γ ` M : τ) = h(Γ ) ` M : h(τ). Then the function h is extended to a
function from instances of typing rules (including incomplete rules) in the rigid
type system to those in the flexible type system by judgement-wise application
of h.
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ω ≺O ω → · · · → ω → q

φ ≺X φ′∧
{φ, ψ1, . . . , ψn} ≺X

∧
{φ′, ψ1, . . . , ψn}

ψ ≺X ψ′

φ→ ψ ≺X φ→ ψ′

φ ≺X φ′

φ→ ψ ≺X φ′ → ψ

Fig. 17. Extension relations in the flexibly type system

Instances of incomplete typing rules in the flexible type system are defined
by using h: the set of all instances of incomplete typing rules in the flexible type
system is defined as

{h(R) | R is an instance of an incomplete typing rule in the rigid type system}.

We write Rules for the set of all rule instances (including instances of incomplete
typing rules) in the flexible type system.

The abstraction map h is extended to a function from (possibly incomplete)
derivations in the rigid type system to a set of instances of typing rules in the
flexible type system, defined by

h(D) = {h(R) | R is used in D}.

We define the abstract rewriting relation V as a relation between sets of rule
instances and rule instances. We need some auxiliary definitions. The relations
φ ≺O φ′, φ ≺P φ′, φ ≺O φ′ and φ ≺P φ′ are defined by the rule in Fig. 17 (here
X ∈ {O,P}, O = P and P = O).

Lemma 17. Let X ∈ {O,P}.

– If τ CX σ, then h(τ) ≺X h(σ).
– If αCX β, then h(α) ≺X h(β).

Proof. By induction on the structures of derivations of τ CX σ and αCX β. ut

A rule with a hole at premise is a rule of the form

J [ ]

K
, [ ] J

K
, [ ]

J
, or

[ ]

?

where [ ] is the hole and J and K are judgements (in the flexible intersection
type system). We define two kinds of hole filling operations. For every rule with
a hole at premise P, P[L] is a rule marked with a single line and P[[L H]] is a
rule marked with a double line. For example, if

P =
J [ ]

K
,

then

P[L] = J L
K

and P[[L H]] = J L H
K

.
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Similarly a rule with a hole at conclusion C is a rule of the form

J
[ ]

, J K
[ ]

, ♦
[ ]

, or †
[ ]

.

C[L] and C[[L N]] are defined similarly.
The abstract rewriting rules are shown in Fig. 18-22 and the following rule

of monotonicity:

Ê V R

Ê ∪ Ê′ V R
.

By abuse of notation, for sets Ê1 and Ê2, we write Ê1 V Ê2 if

– Ê1 ⊆ Ê2, and
– Ê1 V R implies R ∈ Ê2 for every R.

Theorem 11 (Correctness of Abstraction). Let D1 and D2 be derivations
in the rigid intersection type and Ê1 and Ê2 be sets of instances of typing rules
in the flexible intersection type system. Suppose that

– D1 −→ D2,
– Ê1 V Ê2, and
– h(D1) ⊆ Ê1.

Then h(D2) ⊆ Ê2.

Proof. By case analysis on the rule used to derive D1 −→ D2. We prove the case
that (NApp1) is used. Other cases can be proved in the same way.

Since D1 −→ D2 is derived from (NApp1) rule, we know that

D1 =

...
Γ `M : α→ τ

...
∆ ` N : α

Γ ′C∆ `M N :τ ′ N
....

D2 =

...
Γ ′ `M : α→ τ ′ N

...
∆ ` N : α

Γ ′C∆ `M N :τ ′
....

.

We prove the claim by the case analysis on the shape of M .
Case M =M1M2 for some M1 and M2: Now we know that

D1 =

...
Γ1 `M1 : β → α→ τ

(1)

...
Γ1 `M2 : β

(2)

Γ1CΓ2 `M1M2 : α→ τ
(3)

...
∆ ` N : α

(4)

(Γ ′
1C Γ ′

2)C∆ ` (M1M2)N :τ ′ N (5)

(6)....
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Suppose φ ≺O φ′.

(i)

{
†

x :φ ` x :φ′ N

}
V †

x :φ′ ` x :φ′

(ii)

{
†

x :φ ` x :φ′ N , P[x :φ ` x :φ′]

}
V P[[x :φ′ ` x :φ′ H]]

(1) Abstraction of rewriting rule (Var1)

Suppose φ ≺P φ′.

(i)

{
♦

x :φ′ ` x :φ N

}
V †

x :φ′ ` x :φ′

(ii)

{
♦

x :φ′ ` x :φ N , P[x :φ ` x :φ′]

}
V P[[x :φ′ ` x :φ′ H]]

(2) Abstraction of rewriting rule (Var2)

(i)

{
Γ, {xi :φi | 1 ≤ i ≤ n} `M :q

Γ ′ ` F :φ′
1→ . . . φ′

n→q N

}
V

Γ ′, {xi :φ′
i | 1 ≤ i ≤ n} `M :q

Γ ′ ` F :φ′
1→ . . . φ′

n→q

(ii)


Γ, {xi :φi | 1 ≤ i ≤ n} `M :q

Γ ′ ` F :φ′
1→ . . . φ′

n→q N

C[Γ, {xi :φi | 1 ≤ i ≤ n} `M :q]

 V C[[Γ ′, {xi :φ′
i | 1 ≤ i ≤ n} `M :q N]]

(3) Abstraction of rewriting rule (N-Fun)

(i)

{
Γ ′, {xi :φ′

i | 1 ≤ i ≤ n} `M : q H
Γ ` F :φ1→ . . .→φn→q

}
V

Γ ′, {xi :φ′
i | 1 ≤ i ≤ n} `M :q

Γ ′ ` F :φ′
1→ . . . φ′

n→q

(ii)


Γ ′, {xi :φ′

i | 1 ≤ i ≤ n} `M : q H
Γ ` F :φ1→ . . .→φn→q

P[Γ ` F :φ1→ . . .→φn→q]

 V P[[Γ ′ ` F :φ′
1→ . . . φ′

n→q H]]

(4) Abstraction of rewriting rule (H-Fun)

Fig. 18. Abstract rewriting rules 1

50



(i)

{
Γ `M :ψ→φ ∆ ` N :ψ

Γ ′∧∆ `M N :φ′ N

}
V Γ ′ `M :ψ→φ′ ∆ ` N :ψ

Γ ′∧∆ `M N :φ′

(ii)


Γ `M :ψ→φ ∆ ` N :ψ

Γ ′∧∆ `M N :φ′ N

C[Γ `M : ψ → φ]

 V C[[Γ ′ `M :ψ→φ′ N]]

(5) Abstraction of rewriting rule (NApp1)

(i)

{
Γ `M :ψ→φ ∆ ` N :ψ

Γ∧∆′ `M N :φ N

}
V Γ `M :ψ→φ ∆′ ` N :ψ

Γ∧∆′ `M N :φ

(ii)


Γ `M :ψ→φ ∆ ` N :ψ

Γ∧∆′ `M N :φ N

C[∆ ` N : ψ]

 V C[[∆′ ` N :ψ N]]

(6) Abstraction of rewriting rule (NApp2)

(i)

{
Γ ′ `M :ψ→φ′ H ∆ ` N :ψ

Γ∧∆ `M N :φ

}
V Γ ′ `M :ψ→φ′ ∆ ` N :ψ

Γ ′∧∆ `M N :φ′

(ii)


Γ ′ `M :ψ→φ′ H ∆ ` N :ψ

Γ∧∆ `M N :φ

P[Γ∧∆ `M N : φ]

 V P[[Γ ′∧∆ `M N :φ′ H]]

(7) Abstraction of rewriting rule (HApp1)

(i)

{
Γ `M :ψ′→φ H ∆ ` N :ψ

Γ∧∆ `M N :φ

}
V Γ `M :ψ′→φ ∆ ` N :ψ′

Γ∧∆ `M N :φ

(ii)


Γ `M :ψ′→φ H ∆ ` N :ψ

Γ∧∆ `M N :φ

C[∆ ` N : ψ]

 V C[[∆ ` N : ψ′ N]]

(8) Abstraction of rewriting rule (HApp2)

Fig. 19. Abstract rewriting rules 2
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(i)

{
Γ `M :ψ→φ ∆′ ` N :ψ H

Γ∧∆ `M N :φ

}
V Γ `M :ψ→φ ∆′ ` N :ψ

Γ∧∆′ `M N :φ

(ii)


Γ `M :ψ→φ ∆′ ` N :ψ H

Γ∧∆ `M N :φ

P[Γ∧∆ `M N : φ]

 V P[[Γ∧∆′ `M N :φ H]]

(9) Abstraction of rewriting rule (HApp3)

(i)

{
Γ `M :ψ→φ ∆ ` N :ψ′ H

Γ∧∆ `M N :φ

}
V Γ `M :ψ′→φ ∆ ` N :ψ′

Γ∧∆ `M N :φ

(ii)


Γ `M :ψ→φ ∆ ` N :ψ′ H

Γ∧∆ `M N :φ

C[Γ `M : ψ→φ]

 V C[[Γ `M :ψ′→φ N]]

(10) Abstraction of rewriting rule (HApp3)

(i)

{
Γ `M :φ ∆ `M :ψ

Γ ′∧∆ `M :φ′ ∧ ψ N

}
V Γ ′ `M :φ′ ∆ `M :ψ

Γ ′∧∆ `M :φ′ ∧ ψ

(ii)


Γ `M :φ ∆ `M :ψ

Γ ′∧∆ `M :φ′ ∧ ψ N

C[Γ `M : φ]

 V C[[Γ ′ `M :φ′ N]]

(11) Abstraction of rewriting rule (NInt1)

(i)

{
Γ `M :φ ∆ `M :ψ

Γ∧∆′ `M :φ ∧ ψ′ N

}
V Γ `M :φ ∆′ `M :ψ′

Γ∧∆′ `M :φ ∧ ψ′

(ii)


Γ `M :φ ∆ `M :ψ

Γ∧∆′ `M :φ ∧ ψ′ N

C[∆ `M : ψ]

 V C[[∆′ `M :ψ′ N]]

(12) Abstraction of rewriting rule (NInt2)

Fig. 20. Abstract rewriting rules 3
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(i)

{
Γ ′ `M :φ′ H ∆ `M :ψ

Γ∧∆ `M :φ ∧ ψ

}
V Γ ′ `M :φ′ ∆ `M :ψ

Γ ′∧∆ `M :φ′ ∧ ψ

(ii)


Γ ′ `M :φ′ H ∆ `M :ψ

Γ∧∆ `M :φ ∧ ψ

P[Γ∧∆ `M : φ∧ψ]

 V P[[Γ ′∧∆ `M :φ′ ∧ ψ H]]

(13) Abstraction of rewriting rule (HInt1)

(i)

{
Γ `M :φ ∆′ `M :ψ′ H

Γ∧∆ `M :φ ∧ ψ

}
V Γ `M :φ ∆′ `M :ψ′

Γ∧∆′ `M :φ ∧ ψ′

(ii)


Γ `M :φ ∆′ `M :ψ′ H

Γ∧∆ `M :φ ∧ ψ

P[Γ∧∆ `M : φ∧ψ]

 V P[[Γ∧∆′ `M :φ ∧ ψ′ H]]

(14) Abstraction of rewriting rule (HInt2)

(i)

{
♦

ω `M :φ N

}
V ω `M :φ ω `M :ω

ω `M :φ

(ii)

{
♦

ω `M :φ N

}
V ω `M :ω ω `M :φ

ω `M :φ

(iii)

{
♦

ω `M :φ N

}
V ♦

ω `M :ω

(15) Abstraction of rewriting rule (N-♦1) and (N-♦2)

(i)

{
♦

ω ` x :φ N

}
V †

x :φ ` x :φ

(ii)


♦

ω ` x :φ N

P[ω ` x :φ]

 V P[[x :φ ` x :φ H]]

(16) Abstraction of rewriting rule (N-♦3)

Fig. 21. Abstract rewriting rules 4
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Suppose R(F ) = λx1 . . . xn.M
o.

(i)

{
♦

ω ` F :ω → · · · → ω → q N

}
V ω `M :q

ω ` F :ω → · · · → ω → q

(ii)

{
♦

ω ` F :ω → · · · → ω → q N

}
V ♦

ω `M :q N

(17) Abstraction of rewriting rule (N-♦4)

(i)

{
♦

ω `M N :φ N

}
V ω `M :ω → φ ω ` N :ω

ω `M N :φ

(ii)

{
♦

ω `M N :φ N

}
V ♦

ω `M :ω → φ N

(iii)

{
♦

ω `M N :φ N

}
V ♦

ω ` N :ω
.

(18) Abstraction of rewriting rule (N-♦5)

Suppose Θ0 ≺P Θ1 and δ � ♦Θ1.
Here δ � ♦Θ1 if Θ1 ≺P . . . ≺P Θn and δ � Θn for some n ≥ 1 and Θi (1 < i ≤ n).

(i)
{
Θ0 ` S :q0 H

?

}
V Θ1 ` S :q0

?

(ii)


Θ0 ` S :q0 H

?

C[Θ0 ` S :q0] ∈ Ê

 V C[[Θ1 ` S :q0 N]]

(19) Abstraction of rewriting rule (N-?)

Fig. 22. Abstract rewriting rules 5
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and

D2 =

...
Γ1 `M1 : β → α→ τ

(1′)

...
Γ1 `M2 : β

(2′)

Γ ′
1CΓ ′

2 `M1M2 : α→ τ N (3′)
...

∆ ` N : α
(4′)

(Γ ′
1C Γ ′

2)C∆ ` (M1M2)N :τ ′
(5′)

(6′)....

where the numbers will be used to indicate the rules. Assume that R ∈ h(D2).
It suffices to show that R ∈ Ê2. By definition of h(D2), there exists an instance
R′ of a rule in the rigid type system such that R′ is used in D2 and R = h(R′).
There are six subcaces.

– Case that R′ is above (1′) or R′ = (1′): Then R′ is above (1) in D1 or
R′ = (1). By the assumption, R = h(R′) ∈ Ê1. By definition of Ê1 V Ê2, we
have Ê1 ⊆ Ê2. Hence R ∈ Ê2 as desired.

– Case that R′ is above (2′) or R′ = (2′): Similar to the above case.
– Case that R′ is above (4′) or R′ = (4′): Similar to the above case.
– Case that R′ is below (6′) or R′ = (6′): Similar to the above case.
– Case that R′ = (5′): Since h(D1) ⊆ Ê1, we have

h(Γ1CΓ2) `M1M2 : h(α) → h(τ) h(∆) ` N : h(α)

h(Γ ′
1CΓ ′

2) ∧ h(∆) ` (M1M2)N : h(τ ′) N ∈ Ê1.

So by rule (5) in Fig. 19, we have

Ê1 V h(Γ ′
1CΓ ′

2) `M1M2 : h(α) → h(τ ′) h(∆) ` N : h(α)

h(Γ ′
1CΓ ′

2) ∧ h(∆) ` (M1M2)N : h(τ ′)
.

Since the right-hand side of the above expression is equivalent to h(R′) and
thus to R, the above expression can be rephrased as Ê1 V R. So by definition
of Ê1 V Ê2, we have R ∈ Ê2 as desired.

– Case that R′ = (3′): Since h(D1) ⊆ Ê1, we have

h(Γ1CΓ2) `M1M2 : h(α) → h(τ) h(∆) ` N : h(α)

h(Γ ′
1CΓ ′

2) ∧ h(∆) ` (M1M2)N : h(τ ′) N ∈ Ê1

and

h(Γ1) `M1 : h(β) → h(α) → h(τ) h(Γ2) `M2 : h(β)

h(Γ1CΓ2) `M1M2 : h(α) → h(τ)
∈ Ê1.

So by rule (5) in Fig. 19, we have

Ê1 V
h(Γ1) `M1 : h(β) → h(α) → h(τ) h(Γ2) `M2 : h(β)

h(Γ ′
1CΓ ′

2) `M1M2 : h(α) → h(τ ′) N .

Since the right-hand side of the above expression is h(R′) and by definition
of Ê1 V Ê2, we have R = h(R′) ∈ Ê2 as required.
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Other cases such as M = x and M = F are similar to the above case. ut

Corollary 1. Let D̂ be a fixed-point of the abstract rewriting rules (i.e. D̂ V R
implies R ∈ D̂ for every R) such that{

` S : q0
?

,
♦

` S : q0 N
}

⊆ D̂.

If D is reachable, i.e. Dinit −→∗ D, then h(D) ⊆ D̂.

Proof. Note that the assumption that D̂ is a fixed-point of V means that D̂ V D̂.
We prove the corollary by induction on the length of Dinit. The claim holds

if the length is 0, because h(Dinit) =

{
` S : q0

?
,

♦
` S : q0 N

}
. Suppose that

Dinit −→∗ D′ −→ D and h(D′) ⊆ D̂. By Theorem 11 and the assumption that
D̂ V D̂, we have h(D) ⊆ D̂ as desired. ut

I Proof of Therome 5

We first prove termination. Note that for every sort A, the set of all flexible
types of sort A is bounded by a constant determined by A. Hence the number
of elements of D̂ is bounded by a constant determined by the set of all sorts
appearing in G. Termination of step 1 is proved by the fact that the size of D̂,
which is bounded by the constant, increases in each iteration of step 1-2. As we
have seen in Section 2, step 3 always terminates because ShrinkG,A(Γ ) ⊇ Γ
for every Γ .7 Termination of step 2 and 4 is trivial. So the algorithm in Fig. 13
terminates for all input (G,A).

Next we prove that if the algorithm returns yes, then [[G]] is accepted by A.
As we have seen in Section 2, ShrinkG,A(Γ ) = Γ and S : q0 ∈ Γ if and only if
Θ ` (S,G) : (q0, Γ ) for some Θ that satisfies δ � Θ. Thus if the algorithm returns
yes, [[G]] is accepted by A by Theorem 1.

Lastly we show the converse. Suppose that G is accepted by A. Let Γ be the
type environment defined in step 2 of the algorithm and Γgfp be the one in step 4.
By Corollary 1, we know that Γ is an over-approximation of ΓConc in Theorem 4.
Hence by Theorem 4, there exists a certificate ∆ such that ∆ ⊆ ΓConc ⊆ Γ . Since
∆ is a certificate,∆ is a fixed-point of ShrinkG,A. Since Γgfp is the greatest fixed-
point contained by Γ , we have ∆ ⊆ Γgfp. Since ∆ is a certificate, S : q0 ∈ ∆ and
thus S : q0 ∈ Γgfp as desired.

J Proof of Therome 6

In order to prove Theorem 6, we need to give an algorithm to compute the fixed-
point of V, named D̂ in step 1-2 in Fig. 13. We propose an algorithm to compute
D̂ in time O(|G| · expn(poly(A · |Q|)) for some polynomial poly .
7 Here

∧
{φ1, . . . , φn} ⊆

∧
{ψ1, . . . , ψm} if {φ1, . . . , φn} ⊆ {ψ1, . . . , ψn}, and Γ ⊆ ∆ if

Γ (x) ⊆ ∆(x) for every x.
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We need some auxiliary definitions. Let G be a recursion scheme and M and
N be terms over G (or ?). We write M/N if there exists a rule of which M
appears in a premise and N appears in the conclusion. Formally M/N is defined
by:

– M1/N and M2/N if N =M1M2,
– M/F if F ∈ N and R(F ) = λx̃.M , and
– S/?.

For a given term M , Neighbour(M) = {N | N/M} ∪ {N | M/N}. Let R1 and
R2 be instances of typing rules, M1 be the subject of the conclusion of R1 and
M2 be that of R2 (let M1 = ? if the conclusion of R1 is ?, and similar for M2).
We write R1/R2 if M1/M2.

Lemma 18 (Locality of Rewriting Rules). Let Ê be a set of instances of
typing rules and R be a rule instance. Suppose that Ê V R. Then one of the
following conditions holds.

– There exists R0 ∈ Ê such that {R0} V R.
– There exist R1, R2 ∈ Ê such that {R1, R2} V R and R1/R2.

Proof. By induction on the structure of the derivation of Ê V R. ut

The algorithm to compute a fixed-point of the abstract rewriting rules is
shown in Fig. 23.

Theorem 12. If the algorithm in Fig. 23 returns D̂, then D̂ is a fixed-point of
the abstract rewriting rules, i.e. D̂ V R′ implies R′ ∈ D̂.

Proof. The following proposition is a loop invariant of step 2:

If Ê V R′, then R′ ∈ Ê ∪ Ê′, where Ê =
⋃

M Ê(M) and Ê′ =
⋃

M Ê′(M).

If the above proposition is a loop invariant, then Ê′ = { } implies Ê is a fixed-
point of the abstract rewriting rules. Thus D̂ is a fixed-point.

We prove that this proposition is actually a loop invariant. Assume Ê V R′

implies R′ ∈ Ê ∪ Ê′. Let M be a term and R ∈ Ê′(M). Suppose (Ê ∪ {R}) V R′

and R′ /∈ Ê ∪ Ê′ at step 2-1. It suffices to show that R′ ∈ Ê ∪ Ê′ at step 2-6.
By Lemma 18, we have

1. there exists R0 ∈ Ê ∪ {R} such that {R0} V R′, or
2. there exist R1, R2 ∈ Ê ∪ {R} such that {R1, R2} V R′ and R1/R2.

Let us consider the latter case. We have R1 = R or R2 = R because {R1, R2} ⊆ Ê

contradicts to the assumption ({R1, R2} ⊆ Ê implies Ê V R′ and thus R′ ∈ Ê∪Ê′

at step 2-1).
Assume R1 = R. Let N be the subject of the conclusion of R2. We have

M/N by definition. Hence N ∈ Neighbour(M) and R2 ∈ Ê(N). So R′ ∈ X̂(N).
So R′ is added to Ê′ at step 2-3-2.

The case that R2 = R is similar.
Let us consider the farmer case: {R0} ⊆ Ê ∪ {R} such that {R0} V R′.

Similar to the above, we have R0 = R′. Thus R′ ∈ Ŷ in step 2-4. Therefore R′ is
added to Ê′ at step 2-5 as desired. ut
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ConstructD(G,A):

1. Initialise Ê and Ê
′
;

1-1. Let Ê(M) = { } for every term M appearing in G ;

1-2. Let Ê
′(M) = { } for every term M appearing in G ;

1-3. Ê(?) :=
{` S : q0

?

}
;

1-4. Ê
′(S) :=

{ ♦
` S : q0 N

}
;

2. Fixed-point computation ;

2-1. Choose M and R such that R ∈ Ê
′(M) ;

// Move R from Ê
′(M) to Ê(M)

2-2. Ê(M) := Ê(M) ∪ {R} and Ê
′(M) := Ê

′(M)\{R} ;

2-3. For each N ∈ Neighbour(M) do
// Apply abstract rules to Ê(N) ∪ {R}

2-3-1. Let X̂(N) = {R′ | R′ /∈ Ê and (Ê(N) ∪ {R}) V R′} ;

2-3-2. For each R′ ∈ X̂(N) do
Ê
′(N ′) := Ê

′(N ′) ∪ {R′} where N ′
is the subject of R′

;

// Apply abstract rules to {R}
2-4. Let Ŷ = {R′ | R′ /∈ Ê and {R} V R′} ;

2-5. For each R′ ∈ Ŷ do

Ê
′(N ′) := Ê

′(N ′) ∪ {R′} where N ′
is the subject of R′

;

2-6. If Ê
′(M) 6= { } for some M then goto 2-1 ;

3. Let D̂ =
⋃

M Ê(M) ;

4. Return D̂ ;

Fig. 23. An algorithm to construct D̂

Now we estimate the time complexity of the algorithm. Let A be a trivial
automaton and G be a recursion scheme whose order is n and arity is ar . For
a sort A, we define Types(A) = {φ | φ :: A} and |Types(A)| be the number
of elements in Types(A). Let Σ = {a1 :: A1, . . . , an :: An} and |Types| =
max{|Types(A1 → A2 → · · · → An → B)| | FB ∈ N}. Then |Types| is
bounded by O(expn(poly(ar × |Q|))) for some polynomial poly . For each term
M , the number of instances of typing rules in which conclusions have M as the
subject is bounded by 3×|Types|, since an instance of a typing rule has at most
three judgements.

The following lemma shows that the algorithm in Fig. 23 runs in time linear
in the size of recursion schemes and in polynomial in the number of types.

Lemma 19. The algorithm in Fig. 23 runs in time O(|G| · poly(|Types|)) for
some polynomial poly.

Proof. We estimate how may times we reach step 2-3-1. An important observa-
tion is that for every term N , the set {M | N ∈ Neighbour(M)} has at most
three elements. Thus for each N , we need to compute step 2-3-1 for N at most
3× (3× |Types|) times.
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Since step 2-3-1 itself can run in time polynomial in the size of Ê(N) that is
bounded by |Types|, the cost of step 2-3-1 for eachN is bounded byO(poly(|Types|))
for some polynomial poly .

Since the number of terms is bounded by O(|G|), the algorithm runs in time
O(|G| · poly(|Types|)). ut

Now we prove Theorem 6 for the algorithm in Fig. 13 in which D̂ is computed
by the algorithm in Fig. 23. By Lemma 19, we can construct D̂ in time O(|G| ·
poly(|Types|)), and thus in time O(|G|·expn(poly

′(ar ·|Q|))) for some polynomi-
als poly and poly ′. The size of D̂ is also bounded by O(|G| ·expn(poly

′(ar · |Q|))).
Then the cost to compute Γ and the size of Γ in step 2 are bounded by the
same function. The iteration in step 3 can be done in time linear in the size of
Γ by using Rehof and Mogensen’s algorithm [17] (see [8, 9]). Thus we obtain the
claim.
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