
Verification of Higher-Order Concurrent
Programs with Dynamic Resource Creation

Kazuhide Yasukata, Takeshi Tsukada, and Naoki Kobayashi

The University of Tokyo

Abstract. We propose a sound and complete static verification method
for (higher-order) concurrent programs with dynamic creation of re-
sources, such as locks and thread identifiers. To deal with (possibly
infinite) resource creation, we prepare a finite set of abstract resource
names and introduce the notion of scope-safety as a sufficient condition
for avoiding the confusion of different concrete resources mapped to the
same abstract name. We say that a program is scope-safe if no resource is
used after the creation of another resource of the same abstract name. We
prove that the pairwise-reachability problem is decidable for scope-safe
programs with nested locking. We also propose a method for checking
that a given program is scope-safe and with nested locking.

1 Introduction

Verification of concurrent programs is important but fundamentally difficult.
Ramalingam [11] has proved that the reachability problem for two-thread pro-
grams is undecidable in the presence of rendezvous-style synchronization and
recursive procedures. To deal with this limitation, several restricted models of
concurrent computation have been studied. Kahlon et al. [2] have shown that the
pairwise-reachability problem (“Given a program and their control locations, can
the locations be reached simultaneously”) for multi-threaded programs (without
dynamic thread creation) is decidable if only nested locking with a finite num-
ber of locks is allowed as synchronization primitives. The result has later been
extended to allow dynamic thread creation [7], joins (to wait for the termination
of all the child threads) [1], and higher-order functions [13].

One of the important limitations in the programming models in the above
line of work is that the dynamic creation of locks is not allowed; the number
of locks must be finite and they must be statically allocated. In real programs,
dynamic creation of locks is common; for example, in Java, every object may
be used as a lock. Another, related limitation is that, although dynamic thread
creation is supported [1, 7, 13], there is no way to refer to each thread, e.g., to
specify the target of a join; the models in [1] and [13] support join operations,
but they can only be used for synchronizing with all the child threads. Again,
this deviates from real concurrent programming models.

To address the limitation above, we propose a method for checking the pair-
wise reachability of higher-order concurrent programs with primitives for dy-
namic creation of locks and thread identifiers. To keep the verification problem

decidable, however, we introduce the notion of scope safety. We consider a map
from concrete resources (such as locks and thread identifiers) to abstract re-
sources, and say that a program is scope-safe if, intuitively, at most one concrete
resource per each abstract resource is accessible to each thread at each run-time
state. For example, consider the following program:

main() {

l = newlock(); /* create a new lock */

spawn{acq(l);L:rel(l);}; /* spawn a child thread */

acq(l);L:rel(l); /* acquire and release l */

main(); } /* repeat */

The main function repeatedly creates a new lock, spawns a child process, and
synchronizes with it through the lock. Although infinitely many locks are created,
only one lock is visible to each thread; thus, the program is scope-safe. We
show that for the class of scope-safe programs with nested locking, the pairwise
reachability problem is decidable. Our method is an extension of Yasukata et
al.’s one [13], based on higher-order model checking. We also present a method
for deciding whether a given program satisfies the required condition: scope
safety and nested locking. The latter method is also based on a reduction to
higher-order model checking. We have implemented our verification method and
confirmed its effectiveness.

The rest of the paper is structured as follows. Section 2 introduces the target
language with dynamic lock creation and gives the formal definitions of pairwise
reachability and scope safety. Section 3 describes our method for checking the
pairwise-reachability of a given program under the assumption that the program
is scope-safe and has nested locking. Section 4 describes a method for checking
whether a given program is scope-safe and has nested locking. Section 5 briefly
describes how to extend our method for pairwise reachability to support join op-
erations. Section 6 reports the experimental reports. Section 7 discusses related
work and Section 8 concludes the paper.

Due to the space limitation, we omit some proofs and formal definitions,
which can be found in the full version available at the last author’s web page.

2 Pairwise Reachability Problem and Scope Safety

This section formally defines the problem that we address in this paper, namely,
the pairwise reachability problem of higher-order concurrent programs with dy-
namic lock creation. We also introduce the notion of scope safety, which is a
condition on programs that is crucial for the soundness and completeness of our
verification method.

2.1 Language

The target of our analysis is a simply-typed, call-by-name, non-deterministic,
higher-order language with primitives for nested locking and dynamic creation

2

of threads and locks. An extension with join primitives shall be introduced later
in Section 5.

Definition 1 (programs). A program p is a finite set of function definitions:

p = {F1 x̃1 = e1, . . . , Fn x̃n = en } .

Here, Fi and x̃i denote a function symbol and a sequence of variables respectively.
We allow more than one definition for each function symbol (so that a program
has non-determinism), and assume that Fi = S and x̃i is an empty sequence for
some i; S serves as the “main” function. The meta-variable e ranges over the set
Exp of expressions, defined by:

e ::= () | x | F | e1 e2 | newκ e | acq(e1); e2 | rel(e1); e2 | spawn(ec); ep | e`.

Here, ` and κ range over a finite set Label of program point labels and a finite
set K of identifiers (called abstract lock names, or abstract locks).

The intuitive meaning of each expression is as follows; the formal operational
semantics will be given later. The expression () denotes the unit value, and
e1e2 applies the function e1 to e2. The expression newκ e creates a new (con-
crete) lock with abstract name κ, and passes it to the function e. The expression
acq(e1); e2 waits to acquire the lock e1, and executes e2 after the acquisition.
The expression rel(e1); e2 releases the lock e1 and then executes e2. The expres-
sion spawn(ec); ep spawns a child thread that executes ec, and then the parent
thread itself executes ep. The labeled expression e` just behaves like e; ` is used
to specify the pairwise reachability problem, and does not affect the operational
semantics.

We require that all the programs must be simply-typed. The set of types is
defined by:

τ ::= ? | lock | τ1 → τ2,

where ? and lock describe the unit value and locks respectively. The type τ1 → τ2
describes functions from τ1 to τ2. The type system is deferred to Appendix A,
as it is standard. The only point deserving attention is that in each function
definition F x̃ = e, the type of e must be ?; this condition can be ensured by
applying CPS transformation [9].

Remark 1. The language has only the unit value and locks as primitive data.
Boolean values can be expressed by using Church encoding. Infinite data domains
such as integers and lists can also be handled by using predicate abstraction [6]
(though the completeness of the analysis will be lost by the abstraction).

Example 1. Consider the following program p.

p =

{
S = newκ F
F x = spawn(acq(x); (rel(x); ())`); (acq(x); (rel(x); S)`)

}
.

This program is obtained by CPS-transforming the following C-like code:

3

main() { x = newlock(); spawn{acq(x);L:rel(x);};

acq(x);L:rel(x); main(); }

In every loop, the root thread and a created child thread enter the program point
labeled ` by using a created lock x.

Now we define the operational semantics of the language. In the following
semantics, we use a sequence ι of natural numbers as a thread identifier and a
triple (κ, ι,m) as a lock identifier (also called a concrete lock name); that is just
for the technical convenience in formalizing our method. Intuitively, (κ, ι,m)
represents the m-th lock created by the thread ι at newκ. We write ν for a
lock identifier. In presenting the operational semantics below, e ranges over
expressions extended with lock identifiers: e ::= · · · | (κ, ι,m). A thread state is a
quadruple (e, L, s, σ) where e is the (extended) expression to be executed by the
thread, L ∈ (K×N∗×N+)∗ describes the lock acquisition history of the thread,
s ∈ N is the number of children spawned by the thread so far, and σ is a partial
map from K to N∗×N+; intuitively, σ(κ) = (ι,m) means that the concrete lock
with abstract name κ created most recently by the thread or inherited from
the parent thread is (κ, ι,m). A configuration is a partial map c from a finite
set consisting of sequences of natural numbers (where each sequence serves as

a process identifier) to the set of thread states. A transition relation c1
ι,a−−→p c2

on configurations is the least relation closed under the rules given below. We
write] for the disjoint union, ∅ for the empty map, and f {x 7→ v } for the map
defined by: f {x 7→ v } (x) = v and f {x 7→ v } (y) = f(y) for y 6= x.

F x̃ = e′ ∈ p
c] { ι 7→ (F ẽ, L, s, σ) } ι,•−−→p c] { ι 7→ ([ẽ/x̃]e′, L, s, σ) }

σ(κ) = (ι,m) σ′ = σ {κ 7→ (ι,m+ 1) }

c] { ι 7→ (newκ e, L, s, σ) } ι,new(κ,ι,m+1)−−−−−−−−−→p c] { ι 7→ (e (κ, ι,m+ 1), L, s, σ′) }

∀ι′,m.(σ(κ) = (ι′,m)⇒ ι 6= ι′) σ′ = σ {κ 7→ (ι, 1) }

c] { ι 7→ (newκ e, L, s, σ) } ι,new(κ,ι,1)−−−−−−−→p c] { ι 7→ (e (κ, ι, 1), L, s, σ′) }

(κ, ι′,m) 6∈ locked(c] { ι 7→ (acq(κ, ι′,m);e, L, s, σ) })

c] { ι 7→ (acq(κ, ι′,m);e, L, s, σ) } ι,acq(κ,ι′,m)−−−−−−−−→p c] { ι 7→ (e, L · (κ, ι′,m), s, σ) }

L = L′ · (κ, ι′,m)

c] { ι 7→ (rel(κ, ι′,m);e, L, s, σ) } ι,rel(κ,ι′,m)−−−−−−−→p c] { ι 7→ (e, L′, s, σ) }

c] { ι 7→ (spawn(ec);ep, L, s, σ) } ι,sp(ι·s)−−−−−→p c]
{
ι 7→ (ep, L, s+ 1, σ),
ι · s 7→ (ec, ε, 0, σ)

}

4

c] { ι 7→ (e`, L, s, σ) } ι,`−→p c] { ι 7→ (e, L, s, σ) }

L = ε

c] { ι 7→ ((), L, s, σ) } ι,$−−→p c

In the first rule, [ẽ/x̃]e′ denotes the expression obtained from e′ by simultane-
ously substituting ẽ for x̃. The second and third rules are for lock creations. A
lock identifier of the form (κ, ι,m′) is allocated to a new lock, where m′ is the
number of locks created so far (including the new one) by the thread ι at newκ.
In the fourth rule, locked(c) denotes the set of locks acquired by some thread,
i.e., the set { (κ, ι,m) | ∃ι′. c(ι′) = (e, L, s, σ) ∧ (κ, ι,m) ∈ L }. The fourth and
fifth rules ensure that locks are acquired/released in a nested manner, i.e., that
each thread releases locks in the opposite order of acquisition; the execution of
a thread violating this condition gets stuck. We write c0 for the initial config-
uration { ε 7→ (S, ε, 0, ∅) }. We sometimes omit transition labels and just write

c −→p c
′ for c

ι,a−−→p c
′ for some ι and a.

Recall that a program has to acquire/release locks in the nested manner;
otherwise a thread spawned by the program gets stuck at a release operation. We
say that a program has nested locking if no release operations get stuck, that is,
whenever the program reaches a configuration c]{ ι 7→ (rel(κ, ι′,m);e, L, s, σ) },
(κ, ι′,m) is the last lock acquired by the thread ι, i.e., L is of the form L′ ·
(κ, ι′,m).

2.2 Pairwise Reachability

Now we define the goal of our analysis: pairwise reachability.

Definition 2 (pairwise reachability). Let p be a program and `1, `2 be labels.
We say that (`1, `2) is pairwise-reachable by p, written p � `1‖`2, if

c0 −→∗p c] { ι1 7→ (e`11 , L1, s1, σ1), ι2 7→ (e`22 , L2, s2, σ2) }

holds for some c, ι1, ι2, L1, L2, s1, s2, σ1, σ2 with ι1 6= ι2. The pairwise-reachability
problem is the problem of deciding whether p � `1‖`2 holds.

5

Example 2. Recall the program of Example 1. It has the following transitions:

{ ε 7→ (S, ε, 0, ∅) } −→ { ε 7→ (newκ F, ε, 0, ∅) }
−→{ ε 7→ (spawn(acq(κ, ε, 1); (rel(κ, ε, 1); ())`); · · · , ε, 0, {κ 7→ (ε, 1) }) }

−→∗
{
ε 7→ (newκ F, ε, 1, {κ 7→ (ε, 1) }),
0 7→ (acq(κ, ε, 1); (rel(κ, ε, 1); ())`, ε, 0, {κ 7→ (ε, 1) }

}
−→

{
ε 7→ (spawn(acq(κ, ε, 2); (rel(κ, ε, 2); ())`); · · · , ε, 1, {κ 7→ (ε, 2) }),
0 7→ (acq(κ, ε, 1); (rel(κ, ε, 1); ())`, ε, 0, {κ 7→ (ε, 1) })

}

−→∗

ε 7→ (S, ε, 2, {κ 7→ (ε, 2) }),
0 7→ (acq(κ, ε, 1); (rel(κ, ε, 1); ())`, ε, 0, {κ 7→ (ε, 1) }),
1 7→ (acq(κ, ε, 2); (rel(κ, ε, 2); ())`, ε, 0, {κ 7→ (ε, 2) })


−→∗

{
ε 7→ (S, ε, 2, {κ 7→ (ε, 2) }), 0 7→ ((rel(κ, ε, 1); ())`, (κ, ε, 1), 0, {κ 7→ (ε, 1) }),
1 7→ ((rel(κ, ε, 2); ())`, (κ, ε, 2), 0, {κ 7→ (ε, 2) })

}

Thus, the program is pairwise-reachable to (`, `). If the definition of F is replaced
by:

F x = spawn(acq(x); (rel(x); ())`); (acq(x); (rel(x); F x)`),

then the resulting program is not pairwise-reachable to (`, `), since all the pro-
gram points ` are now guarded by the same (concrete) lock.

2.3 Scope Safety

Pairwise reachability is known to be decidable for the language without dynamic
lock creations [13]. In the presence of dynamic lock creations, the decidability of
pairwise reachability is open, to our knowledge. To make the problem tractable,
we introduce the notion of scope safety : a thread of a scope-safe program can
access only the newest lock in the scope for each abstract lock κ.

Definition 3 (scope-safety). A program p is scope-safe if

c0 −→∗p c] { ι 7→ (op(κ, ι′,m); e, L, s, σ) } =⇒ σ(κ) = (ι′,m)

holds for every c, ι, (κ, ι′,m), e, L, s, σ and op ∈ {acq, rel }.

For a scope-safe program, the number of locks is locally bounded in the
sense that, at each run-time state, the number of locks accessible to each thread
is bounded. Note that the number of locks in a configuration is still unbounded.

Example 3. The program in Example 1 is scope-safe. Although infinitely many
locks are created with the abstract lock name κ, every thread accesses only the
lock that is most recently created by itself or the parent thread.

The following program is not scope-safe:

S = newκ G G x = newκ(F x)
F x y = spawn(acq(x); (rel(x); ())`); (acq(y); (rel(y); S)`).

6

F x y accesses two locks x and y with the same abstract lock κ simultaneously.
If κ in G is renamed to κ′, however, the resulting program is scope-safe, since x
and y now have different abstract lock names: κ and κ′ respectively.

Now we can state the main result of this paper proved in the next section.

Theorem 1. The pairwise reachability problem for scope-safe programs with
nested locking is decidable.

We think that the scope-safety is a natural assumption, and that there are
many programs that create an unbounded number of locks but satisfy the scope
safety. Like the program in Example 1, such a program typically spawns an
unbounded number of threads, each of which creates a lock (thus; the number of
locks is globally unbounded) and uses it locally for synchronizations with child
threads.

3 Verification of Pairwise Reachability

This section gives a sound and complete verification method of the pairwise-
reachability problem of scope-safe programs with nested locking. We reduce
the problem to (a variant of) higher-order model checking, a decision problem
whether a language of a given higher-order tree grammar is a subset of a given
regular tree language.

1. We use (extended) action trees [1, 7], which represent transition sequences
in a thread-wise manner. Let ATrees(p) be the set of all action trees representing
possible transitions of the program p. Then p � `1‖`2 if and only if ATrees(p)
contains an action tree with leaves labeled by `1 and `2, respectively. Writing
R`1,`2 for the set of action trees with leaves labeled by `1 and `2, the pairwise
reachability problem is reduced to the emptiness problem of ATrees(p) ∩R`1,`2 .

2. If we could represent ATrees(p) by a higher-order tree grammar, we would

be done, since the emptiness problem ATrees(p) ∩ R`1,`2
?
= ∅ is equivalent to

the higher-order model checking problem ATrees(p)
?
⊆ R`1,`2 ; note that R`1,`2 is

regular. Unfortunately, however, it is not easy to give a grammar to generate
ATrees(p) because of synchronization by locks. Instead we consider a superset
of ATrees(p), written RelaxedATrees(p), including action trees that are infeasible
because of locks. In other words, an action tree in RelaxedATrees(p) represents a
transition sequence in which the synchronization constraint on locks is ignored.
It is easy to construct a grammar generating RelaxedATrees(p).

3. We give a way to check the feasibility of an action tree (i.e. whether an
action tree conforms to the synchronization constraint on locks) by introducing
an operational semantics of action trees. Let LSATrees be the set of feasible
action trees. We show that ATrees(p) = RelaxedATrees(p) ∩ LSATrees provided
that p is a scope-safe program. Thus, the pairwise reachability is reduced to the
(non)-emptiness of RelaxedATrees(p) ∩ LSATrees ∩R`1,`2 .

4. We show that LSATrees is a regular tree language.

7

Now the pairwise reachability problem has been reduced to the emptiness prob-

lem RelaxedATrees(p)∩LSATrees∩R`1,`2
?
= ∅, which is equivalent to the instance

of higher-order model checking problem:

RelaxedATrees(p)
?
⊆ LSATrees ∩R`1,`2

and thus decidable. In the rest of this section, we first review higher-order model
checking [5, 8], in Section 3.1. We then explain each step in Sections 3.2–3.5.

3.1 Higher-order Model Checking

Higher-order model checking is concerned about properties of the trees generated
by higher-order tree grammars called higher-order recursion schemes (HORS, in
short). In the standard definition of higher-order model checking [5, 8], a HORS
is treated as a generator of a single, possibly infinite tree. In the present paper,
we consider a (non-deterministic) HORS as a generator of a finite tree language
(i.e., a set of finite trees).

Definition 4 (non-deterministic HORS). Let Σ be a finite set of symbols
called tree constructors. We assume that each tree constructor is associated with
a non-negative integer called an arity. A (non-deterministic) HORS is a set of
function definitions: {F1 x̃1 = t1, . . . , Fn x̃n = tn }, where ti ranges over the set
of terms given by: t ::= a | x | F | t1 t2. Here, a ranges over Σ. As in the language
in Section 2, we allow more than one definition for each function symbol Fi, and
require that Fi = S and x̃i is empty for some i. We also require that HORS
be simply-typed; in each definition F x̃ = t, t must have the tree type o. Each
constructor of arity k is given type o→ · · · → o︸ ︷︷ ︸

k

→ o.

Given a HORS G, the reduction relation −→G on terms is defined
by: (i) F t1 · · · tk −→G [t1/x1, . . . , tk/xk]t if F x1 · · · xk = t ∈ G; and
(ii) a t1 · · · ti · · · tk −→G a t1 · · · t′i · · · tk if ti −→G t′i. We call a term t a
(Σ-labeled) tree if it consists of only tree constructors, and write Tree for
the set of trees. The language generated by a HORS G, written L(G), is
{ t ∈ Tree | S −→∗G t }.

Compared with the language in the previous section, we have tree construc-
tors in HORS instead of primitives on locks and treads. The following is an easy
corollary of the decidability of (the standard version of) higher-order model
checking [8].

Theorem 2. Given a HORS G and a regular language R, it is decidable whether
L(G) ⊆ R holds.

3.2 Action Trees

Action trees, first introduced by Lammich et al. [7], represent thread-wise action
histories of a concurrent program. We extend them to deal with dynamic lock
creation.

8

Definition 5 (action trees). The set T of action trees, ranged over by γ, is
defined inductively by: γ ::= ⊥ | $ | ` γ | newκγ | acqκγ | relκγ | sp γp γc.

Each inner node of γ represents an action performed by a thread. The tree
` γ means that the thread has reached an expression labeled ` and then behaved
like γ. The tree newκγ means that the thread has created a new lock of abstract
name κ, and then behaved like γ. The tree acqκγ (resp. relκγ) means that the
thread has acquired (resp. released) a lock of abstract name κ, and then behaved
like γ. The tree sp γp γc means that the thread has spawned a child thread that
behaved like γc, and the thread itself behaved like γp.

A leaf node represents the status of the thread: ⊥ means that it is alive and
$ means that it has terminated.

Example 4. The figure on the righthand side below shows the action tree
corresponding to the transition sequence in Example 2. The superscripts
0–12 are the node numbers added for the convenience of explanation;
they reflect the order of actions in the transition sequence in Example 2.

The tree represents the computation in which (i) the root
thread creates a new lock with abstract name κ (as shown
by node 0), spawns a new thread (node 1), acquires and
releases the lock (nodes 2 and 3), creates another lock with
the same abstract name κ (node 4) and spawns another
thread (node 5), and (ii) the two child threads acquire the
locks (nodes 7 and 10) and reaches the program point `
(nodes 8 and 11). The leaves of the action tree show that
all the threads are still alive (nodes 6, 9 and 12). Note that
the locks acquired by the two child threads are different,
although nodes 7 and 10 have the same label acqκ; based
on the scope safety assumption, κ refers to the lock cre-
ated at the closest ancestor node labeled by newκ. Thus,
nodes 7 and 10 refer to the locks created at nodes 0 and 4
respectively.

new0
κ

sp1

acq2κ

rel3κ

new4
κ

sp5

⊥6 acq10κ

`11

⊥12

acq7κ

`8

⊥9

Note also that the action tree does not specify the order between actions of
different threads. For example, the action at node 7 may occur before the one
at node 4. Due to the synchronization constraint on locks, however, some order
may be implicitly imposed; for example, since nodes 2, 3, and 7 refer to the same
lock created at node 0, the action at 3 must precede the one at 7. ut

For a sequence of events (ι1, a1) · · · · · (ιn, an), we write a((ι1, a1) · · · · · (ιn, an))
for the corresponding action tree; see Appendix B.2 for the formal definition.
We write ATrees(p) for the set

{a((ι1, a1) · · · · · (ιn, an))

| c0
ι1,a1−−−→p c1

ι2,a2−−−→p . . .
ιn,an−−−→p cn; c0 is the initial configuration.}

of action trees of all the possible transition sequences of the program p.

9

We write R`1,`2 for the set of action trees of the form C[`1⊥, `2⊥], where
C is a tree context with two holes. Note that R`1,`2 does not depend on the
program. Clearly, the set R`1,`2 is regular. By the definition of ATrees(p), the
pairwise reachability is reduced to the non-emptiness of ATrees(p) ∩ R`1,`2 , as
stated below.

Lemma 1. For every program p and every pair of labels (`1, `2), we have

p � `1‖`2 ⇐⇒ ATrees(p) ∩R`1,`2 6= ∅.

3.3 Relaxed Transition of Programs

The next step is to obtain a finitary representation of ATrees(p). If we were
able to represent ATrees(p) as a HORS, then the (non-)emptiness problem
ATrees(p) ∩ R`1,`2 obtained in Lemma 1 can be solved by higher-order model
checking. Unfortunately, a direct construction of such a HORS is difficult, due
to the synchronization constraint on locks.

Instead, we consider an approximation RelaxedATrees(p) of ATrees(p), which
are obtained by ignoring the synchronization constraint, and represent it as
a HORS. The set ATrees(p) is then obtained as RelaxedATrees(p) ∩ LSATrees,
where LSATrees is the set of all the action trees that respect the synchroniza-
tion constraint but are independent of the program p. In this subsection, we
define RelaxedATrees(p) and provide its grammar representation; LSATrees shall
be constructed and proved to be regular in Sections 3.4 and 3.5.

A relaxed transition relation c1
ι,a
99Kp c2 on configurations is the least rela-

tion closed under the rules in Section 2 except that the conditions (κ, ι′,m) 6∈
locked(c] { ι 7→ (acq(κ, ι′,m); e2, L, σ) }) of the fourth rule (for lock acquisi-
tion), L = L′ · (κ, ι′,m) of the fifth rule (for lock release) and L = ε of the
last rule (for thread termination) are removed. Similarly to ATrees(p) we write
RelaxedATrees(p) for the set

{a((ι1, a1) . . . (ιn, an)) | c0
ι1,a1
99Kp . . .

ιn,an
99Kp cn}

of action trees of all possible relaxed transition sequence of the program p. Ob-
viously RelaxedATrees(p) is a superset of ATrees(p).

We can easily transform a given program p into a HORS Gp whose language
is RelaxedATrees(p). Each lock is replaced by a pair of tree constructors acqκ
and relκ, and each action in the program is replaced by a construction of the
corresponding tree node. For example, spawn(e1); e2 and newκ e1 are respec-
tively transformed to sp e′1 e

′
2, and newκ (e′1 (acqκ, relκ)), where e′i is obtained

by recursively transforming ei. (Here, for the sake of simplicity, we have used
pairs as primitives; they can be represented as functions using the standard
Church encoding.) In addition, since we are interested in intermediate states of
a program instead of the final state, we prepare rules to abort reductions and
generate leaves ⊥. We illustrate these points through an example below; the
formal definition of Gp is given in Appendix B.4.

10

Example 5. Recall Example 1. The set RelaxedATrees(p) is generated by the
following HORS Gp:

S = Newκ F
F x = Spawn (Acq x (Label ` (Rel x End))) (Acq x (Label ` (Rel x S)))
Newκ e = newκ (e (acqκ, relκ)) Acq (xa, xr) e = xa e Rel (xa, xr) e = xr e
Spawn ec ep = sp ep ec Label ` e = ` e End = $
N x̃ = ⊥ (for each N ∈ {S, F,Newκ,Acq ,Rel ,Spawn,Label `,End }.)

The first two lines correspond to the function definitions in the original programs;
we have just replaced each action with the corresponding function symbols. The
next two lines define functions for generating a tree node corresponding to each
action. The function Newκ represents a new lock as a pair (acqκ, relκ) and passes
it to e as an argument. The function Acq extracts the first component acqκ of
lock x, which is a tree constructor acqκ, and creates a node acqκ. Similarly the
Rel rule creates a node relκ. The last rule is used to stop the thread and generate
the symbol ⊥ meaning that the thread is alive. ut

3.4 Lock Sensitivity of Action Trees

The set RelaxedATrees(p) may contain action trees for which there are no cor-
responding transition sequences that respect the synchronization constraint. To
exclude them, we introduce a subset LSATrees of γ, which consists of only action
trees that have corresponding transition sequences for some program (that satis-
fies scope safety and well-nested locking), so that the set ATrees(p) is represented
by RelaxedATrees(p)∩LSATrees. To this end, we introduce an abstract transition

relation ĉ
ι,a−−→ ĉ′, obtained by replacing expressions with action trees.

Definition 6 (abstract configurations). An abstract thread state is a
quadruple (γ, L, s, σ), obtained by replacing the first component of a thread
state in Section 2 with an action tree γ. An abstract configuration ĉ is a partial
map from the set of thread identifiers to the set of abstract thread states. The
transition relation on abstract configurations is defined by:

ĉ] { ι 7→ (γ, L, s, σ) } ι,•−−→ ĉ] { ι 7→ (γ, L, s, σ) }

σ(κ) = (ι,m) σ′ = σ {κ 7→ (ι,m+ 1) }

ĉ] { ι 7→ (newκ γ, L, s, σ) } ι,new(κ,ι,m+1)−−−−−−−−−→ ĉ] { ι 7→ (γ, L, s, σ′) }

∀ι′,m.(σ(κ) = (ι′,m)⇒ ι 6= ι′) σ′ = σ {κ 7→ (ι, 1) }

ĉ] { ι 7→ (newκ γ, L, s, σ) } ι,new(κ,ι,1)−−−−−−−→ ĉ] { ι 7→ (γ, L, s, σ′) }

σ(κ) = (ι′,m) (κ, ι′,m) 6∈ locked(ĉ] { ι 7→ (acqκ γ, L, s, σ) })

ĉ] { ι 7→ (acqκ γ, L, s, σ) } ι,acq(κ,ι′,m)−−−−−−−−→ ĉ] { ι 7→ (γ, L · (κ, ι′,m), s, σ) }

11

σ(κ) = (ι′,m) L = L′ · (κ, ι′,m)

ĉ] { ι 7→ (relκ γ, L, s, σ) } ι,rel(κ,ι′,m)−−−−−−−→ ĉ] { ι 7→ (γ, L′, s, σ) }

ĉ] { ι 7→ (sp γp γc, L, s, σ) } ι,sp(ι·s)−−−−−→ ĉ]
{
ι 7→ (γp, L, s+ 1, σ),
ι · s 7→ (γc, ε, 0, σ)

}

ĉ] { ι 7→ (` γ, L, s, σ) } ι,`−→ ĉ] { ι 7→ (γ, L, s, σ) }

L = ε

ĉ] { ι 7→ ($, L, s, σ) } ι,$−−→ ĉ

Here, locked(ĉ) is defined similarly to that for (concrete) configurations, by

locked(ĉ) = { (κ, ι′,m) | ∃ι. ĉ(ι) = (γ, L, s, σ) ∧ (κ, ι′,m) ∈ L } .

In the rules above for acquiring and releasing locks, we have added the con-
dition σ(κ) = (ι′,m), which captures the scope safety assumption.

Using the abstract transition relation, the set of lock sensitive action trees is
defined as follows.

Definition 7 (lock sensitivity). An action tree γ is lock sensitive if { 0 7→
(γ, ε, 0, ∅) } ∗−→ ⊥̂, where ⊥̂ is any abstract configuration such that ⊥̂(ι) =
(γ, L, s, σ) implies γ = ⊥. We write LSATrees for the set of lock-sensitive ac-
tion trees.

Theorem 3. Let p be a scope-safe program. Then,

ATrees(p) = RelaxedATrees(p) ∩ LSATrees.

Intuitively, the theorem above holds because the concrete transition system

c
ι,a−−→p c

′ is obtained as the product of the relaxed transition system and the
abstract transition system; see Appendix B.5 for a proof.

3.5 Regularity of LSATrees

We show that LSATrees is a regular tree language. To this end, we adapt the
notion of an acquisition structure [1, 7] to deal with an unbounded number of
locks. An acquisition structure is a summary of the usage of locks in an action
tree.

Let us first review the idea behind acquisition structures. Let ĉi = { ιi 7→
(γi, Li, si, σi) } (i = 1, . . . , n) be abstract configurations that are individually

lock-sensitive, i.e. ĉi
∗−→ ⊥̂i for some bottom configuration ⊥̂i for each i. We

would like to decide if the merged configuration is also lock-sensitive, i.e. whether⊎n
i=1 ĉi

∗−→
⊎n
i=1 ⊥̂i. In some cases, it is obviously impossible.

12

– Let Ǎf i be the set of (concrete) locks that the final configuration ⊥̂i has.

If Ǎf i ∩ Ǎf j 6= ∅, the merged configuration is not lock-sensitive since
⊎n
i=1 ⊥̂i

violates the condition that each lock can be assigned to at most one thread.

– Let us call (an occurrence of) an acquire operation in the transition se-

quence π : ĉi
∗−→ ⊥̂i final if the lock is not released in the following subsequence.

Let Gπ be the strict preorder1 on concrete lock names defined by (ν, ν′) ∈ Gπ
just if an acquire operation of ν′ appears after the final acquisition of ν in π. Let
Ǧi be the intersection of Gπ for all possible transition sequences π : ĉi

∗−→ ⊥̂i. If⋃n
i=1 Ǧi is cyclic, the merged configuration is not lock-sensitive. For example, if

(ν, ν′), (ν′, ν) ∈
⋃n
i=1 Ǧi and π :

⊎n
i=1 ĉi

∗−→
⊎n
i=1 ⊥̂i, then the final acquisition of

ν in π must precede that of ν′ and vice versa, a contradiction.

Conversely, provided that Li = ε for all i, the above conditions are sufficient for
the lock-sensitivity of the merged configuration. A transition sequence can be
constructed by an eager scheduling as follows. If there is a thread whose next
operation is not a final acquisition, run the thread. Furthermore if the thread
acquires a lock, run it until the lock is released; then, by nested locking, the
thread does not have any lock at that state. If all the threads reach ⊥ or final
acquisition operations, choose a thread acquiring a minimal lock with respect to⋃n
i=1 Ǧi. Since such a lock is ensured not to appear in the sequel, we can safely

forget the lock and regard the thread as having no lock.

Unlike the previous work [1, 7], the number of locks is unbounded in our set-
ting. However the above test is concerned only about the locks shared by ĉi and
ĉj for some i 6= j. Thanks to the scope-safety of the program, the locks used by
ĉi are in { (κ, σ(κ)) | κ ∈ K} or those that will be generated by ĉi in the subse-

quent computation. Hence the restrictions of Ǎf i and Ǧi to { (κ, σi(κ)) | κ ∈ K},
which is finite, is sufficient for the purpose. We represent those restrictions as
sets and relations on abstract locks κ ∈ K.

The formal definition of the acquisition structure of an action tree is as
follows. It has additional fields: A (the set of locks used in the action tree) is used
to compute G in an inductive way, and R (the list of dangling release operations)
and T (the leaf node of this thread) are used to check if the locks are used in the
expected manner (i.e. well-nested, no re-entrant and that a terminating thread
have released all the locks). Given a relation G, let G+ be its transitive closure
and G�A be the restriction { (x, y) ∈ G | x, y ∈ A }. Given a set A, we write A~

for the set of all finite sequences on A without repetition.

Definition 8 (acquisition structure). The acquisition structure as(γ) of an
action tree γ is a tuple (A,Af , R, T,G) ∈ P(K)×P(K)×K~×{ $,⊥}×P(K×K),
inductively defined as follows (where we write Aγ for the first component of as(γ)
and so on, and undef means undefined):

as(⊥) = (∅, ∅, ε,⊥, ∅) as($) = (∅, ∅, ε, $, ∅) as(` γ) = as(γ)

1 A strict preorder, often written as <, is an irreflexive and transitive relation.

13

as(acqκ γ) =



(Aγ ∪ {κ}, Afγ , R′, Tγ , Gγ)

(if Rγ = R′ · κ)

(Aγ ∪ {κ}, Afγ ∪ {κ}, ε, Tγ , (Gγ ∪ ({κ } ×Aγ))+)

(if Rγ = ε and Tγ = ⊥ and Gγ ∪ ({κ } ×Aγ) is acyclic)

undef (otherwise)

as(relκ γ) =

{
(Aγ , A

f
γ , Rγ · κ, Tγ , Gγ) (if κ /∈ Rγ)

undef (if κ ∈ Rγ)

as(sp γp γc) =


(Aγp ∪Aγc , Afγp ∪A

f
γc , Rγp , Tγp , (Gγp ∪Gγc)

+)

(if Rγc = ε and Afγp ∩A
f
γc = ∅ and Gγp ∪Gγc is acyclic)

undef (if Rγc 6= ε or Afγp ∩A
f
γc 6= ∅ or Gγp ∪Gγc is cyclic)

as(newκ γ) =

{
(Aγ\{κ}, Afγ\{κ}, Rγ , Tγ , Gγ�K\{κ}) (if κ /∈ R)

undef (if κ ∈ R).

For every action tree γ, no element κ ∈ K appears twice in the sequence Rγ ∈ K∗
(if defined). Hence the set of all acquisition structures can be seen as finite.

The set of lock-sensitive action trees is characterized by the acquisition struc-
ture; see Appendix B.6 for a proof.

Theorem 4. An action tree γ is lock sensitive iff as(γ) = (∅, ∅, ε, T, ∅).

By the definition of the acquisition structure, it can be obviously computed
by a bottom-up tree automaton. Hence:

Theorem 5. LSATrees is a regular tree language.

Now we can reduce the pairwise-reachability problem to a higher-order model
checking problem as follows. Let p be a scope-safe program and (`1, `2) be a pair
of labels. Then p � `1‖`2 if and only if RelaxedATrees(p) ∩ LSATrees ∩ R`1,`2 6=
∅ by Lemma 1 and Theorem 3. This is equivalent to RelaxedATrees(p) 6⊆
LSATrees ∩R`1,`2 . Since LSATrees is regular (Theorem 5), the right-hand-side
is regular. Hence the problem is an instance of higher-order model checking, and
thus decidable. This completes the proof of the main theorem, Theorem 1.

4 Checking Scope-Safety and Well-Nested Locking

The verification method for the pairwise reachability in the previous section is
sound and complete for the class of scope-safe programs with nested locking.
For programs outside the class, our verification method is unsound.2 Thus, it is
desirable to have methods for checking that a given program satisfies the con-
ditions of scope-safety and well-nested locking. Fortunately, higher-order model
checking can also be used for that purpose, as described below.

2 Since the pairwise reachability is usually considered an undesirable behavior (e.g. a
race), we say that a pairwise reachability analysis is sound when it does not miss
the possibility of pairwise reachability.

14

4.1 Strong Scope Safety

For ease of explanation, we first present a method for checking a stronger condi-
tion called strong scope-safety. We call a program strongly scope-safe if it satisfies
the conditions of Definition 3 where the transition relation −→p is replaced with
the relaxed transition relation 99Kp.

It would be quite easy to find a violation of strong scope-safety if one could
construct a “concrete action tree”, in which lock operations are annotated by

concrete lock names, e.g. new
(ι,m)
κ . In this setting, what we should do is to

check whether the “concrete action tree” has a node op
(ι,m)
κ (op ∈ { acq, rel })

whose nearest ancestor newκ-node is annotated with a different concrete name
(ι′,m′)(6= (ι,m)). Although the naive application of this idea seems to require
infinitely many names, we can do this by using only two names because it suffices
to ensure that two chosen concrete lock names are indeed different.

Given a transition sequence, and a subset X of concrete lock names, its semi-
concrete action tree is an action tree in which lock operations are annotated with
A or B, e.g. newAκ , where A means that the concrete lock name is in X and B
otherwise. A semi-concrete action tree violates scope-safety if there is a node opBκ
(op ∈ { acq, rel }) whose nearest ancestor newκ node is labeled with A (i.e. it is
newAκ). This is a regular tree property, which we write as S.

A HORS GA,Bp generating the set of semi-concrete action trees of a program p
can be constructed in the same way as in Section 3.3, except that the behaviour
of Newκ is now nondeterministic as follows:

Newκ e = newAκ (e (ackAκ , rel
A
κ)) Newκ e = newBκ (e (ackBκ , rel

B
κ)).

Intuitively New nondeterministically chooses if the newly created concrete lock
name should belong to X or not.

By the discussion above, it should be clear that a program is strongly scope-
safe if and only if L(GA,Bp)∩ S = ∅. Thus, the problem to check whether a given
program is strongly scope-safe is decidable.

4.2 Well-nested Locking

Here we give a method for conservatively checking whether a given scope-safe
program has nested locking, ignoring inter-thread synchronization.

We give a sketch of the construction of a top-down tree automaton, which
nondeterministically chooses a thread of the action tree and computes acquired
locks, and accepts the tree if the chosen thread indeed violates well-nested lock-
ing. A state is either ? (meaning that the automaton has not chosen a thread)
or a sequence R ∈ (K ∪ {] })∗ (meaning that the chosen thread has acquired
(and not released) the locks in the order specified in R) such that each κ ∈ K
appears at most once in R. The symbol] is used to express locks that have been
shadowed (i.e., those that are no longer visible due to the creation of a lock of
the same abstract name). For example, if the current node is new(κ) and the
state is R · κ · R′, then the automaton changes its state to R ·] · R′ and moves

15

to the child node. If the node is acqκ and the state is R, then the automaton
checks if κ appears in R; if so, the automaton rejects the tree since this thread
gets stuck (note that locks are non-reentrant) and does not violate well-nested
locking; otherwise, it moves to the child node with the state R · κ. If the node
is rel(κ) and the state is R · κ, then the automaton goes to the child node with
the state R. If the automaton sees rel(κ) at the state R · ξ (ξ ∈ K ∪ {] }) with
κ 6= ξ, then it accepts the tree because this release operation violates well-nested
locking. In the construction above, R may contain an unbounded number of],
so the number of states is infinite. However, only the right-most occurrence of
] is meaningful and one can safely forget the other occurrences of]. Thus the
number of states can be reduced to finite.

Let us write N for the tree language accepted by the above automaton. The
following result is obvious.

Lemma 2. Let p be a scope-safe program. If L(GA,Bp)∩N = ∅, then p has nested
locking.

4.3 Scope-safety and well-nested locking

We have seen above that L(GA,Bp)∩ (N∪S) = ∅ implies p is a scope-safe program
with nested locking. The converse does not hold, however. This is because even
if L(GA,Bp)∩ (N∪S) 6= ∅, γ ∈ L(GA,Bp)∩ (N∪S) may be infeasible because of the
synchronization through locks.

We can obtain a complete method by taking into account the lock-sensitivity
of action trees, in a manner similar to Section 3.4. We call a (semi-concrete)
action tree γ almost lock-sensitive if it is obtained by adding an action to a lock-
sensitive action tree (i.e. there exists a pair of a one-hole tree context C and
an action tree γ′ such that γ = C[γ′], C[⊥] is lock-sensitive and γ′ has exactly
one node whose label is not ⊥). Let LSATrees′ be the set of semi-concrete action
trees that are almost lock-sensitive.

Lemma 3. (L(GA,Bp) ∩ LSATrees′) ∩ (N ∪ S) = ∅ if and only if p is a scope-safe
program with nested locking.

As a corollary, we obtain:

Theorem 6. The problem to check whether a given program is scope-safe and
has nested locking is decidable.

5 Extension with Join Operations

We briefly discuss our method for pairwise reachability (described in Section 3)
to support first-class thread identifiers and join operations. The target language
is extended as follows. We introduce a new base type ID for thread IDs. Each
spawn expression spawn(ec); ep is now annotated with an abstract thread ID
θ, which does not affect the transition but is used to define the notion of scope

16

safety. The expression spawns a new child thread ec, and executes ep(ι), where
ι is the (unique) identifier (ID) of the new thread; thus ep has type ID → ?.
We add a new expression join(e1); e2, which waits for the termination of the
thread with ID e1, and then executes e2. A program of the extended language
is scope-safe if, in addition to the condition on scope-safety on locks, it satisfies
the analogous condition on thread identifiers, that each join operation may refer
to only the newest thread identifier in the scope for each abstract thread ID θ.

Example 6. The following program is a variation of the program in Example 1.

p2 =

{
S = newi F F x = spawnθ(acq(x); (rel(x); $)`);G x)
G x t = acq(x); (rel(x); join(t); S).

}
The function F takes a lock as an argument, spawns a new thread, and passes its
identifier to G x. The program is scope-safe. Unlike the program in Example 1,
(`, `) is not pairwise reachable, because the root thread waits for the termination
of a child thread before spawning another thread.

Our pairwise reachability verification method in Section 3 can be smoothly
extended, except for the regularity of the set of lock-sensitive action trees, which
we briefly discuss below. Let ĉ1 = { ι 7→ (γ, s + 1, L, σ) } and ĉ′1 = { ι · s 7→
(γ′, 0, ε, σ) } be abstract configurations and assume that each of them is schedu-

lable alone, i.e. ĉ1
∗−→p ⊥̂1 and ĉ2

∗−→p ⊥̂2. The question is when ĉ1] ĉ′1 is
schedulable. If ĉ1 does not do join(ι · s), the schedulability of ĉ1] ĉ′1 can be
checked in the same way as in Section 3.5. If ĉ1 does a join(ι · s) action, an
additional condition is required for schedulability of ĉ1] ĉ′1: if ν ∈ L and ν will
not be released until the join operator, then ĉ2 cannot use this lock. Hence the
additionally required piece of data is the set of pairs (ι′, ν′) of a thread ID and
a lock name such that ν′ is kept locked from the current state until a join(ι′)
action. Since only the thread IDs and lock names in the scope are relevant, this
information can be described in finite states.

6 Experiments

We have implemented a tool for checking the pairwise reachability and strong
scope safety based on our methods. The tool uses HorSat2 [3] as the backend
higher-order model checker. We have tested the tool on a machine with an Intel
Core i5 CPU with 2.5GHz and 16GB memory.

Program Reachability SS PR

example1 YES 0.002 0.385
example2 NO 0.002 29.5
datarace NO 0.004 1.04

The table on the righthand side shows
the result of preliminary experiments.
The column “Reachability” shows the an-
swers for the pairwise reachability prob-
lems. The columns ”SS” and ”PR” respec-
tively show the times spent for checking
(strong) scope-safety and pairwise-reachability, measured in seconds. indicates
the elapsed time of scope-safety checking and pairwise-reachability checking. The
programs example1 and example2 are those given in Examples 1 and 6 respec-
tively. The benchmark program datarace models the following C-like code:

17

main() { r = newref(); l = newlock();

spawn{acq(l);write(r);rel(l);}; acq(l);write(r);rel(l); main(); }

where the dynamic creation of reference cells is handled in a manner similar to
that of locks and thread identifiers. We checked whether two write commands
for the same reference cell may be reached simultaneously. All the programs
are strongly scope-safe. According to the experimental results, the strong scope
safety can be checked instantly. The pairwise reachability checking is slower, but
reasonably fast, considering the complexity of higher-order model checking [8].
The pairwise reachability checking for example2 took much longer than for the
other programs. We think this is due to the use of the join primitive, which
probably blowed up the space exploited by the model checker. This suggests
that a further improvement of the higher-order model checker is required for
handling real-world programs; we leave it for future work.

7 Related Work

There have been several studies on the decidability of pairwise reachability of
concurrent programs with nested locking [1, 2, 7, 13]. To our knowledge, however,
our result is the first one that allows dynamic creation of an unbounded number
of locks, albeit under the condition of scope safety. The notion of scope safety
is also new. The idea of reducing pairwise reachability to higher-order model
checking has been first proposed by Yasukata et al. [13]; our method described
in Section 3 is an extension of their method to deal with an unbounded number
of locks. There are many other methods for analyzing concurrent programs with
dynamic resource creation [4, 10, 12], but they are either incomplete or unsound
(due to over- or under-approximation of reachable states).

The idea of non-deterministically tracking the usage of locks used in Sec-
tion 4 (for checking scope safety and well-nested locking) has been inspired from
Kobayashi’s work for applying higher-order model checking to resource usage
analysis [5]. His method is for sequential (functional) programs, however.

8 Conclusion

We have presented a method for deciding the pairwise reachability of concurrent
programs with dynamic creation of resources and thread identifiers. We have
introduced the notion of scope safety, and proved that our method is sound and
complete for scope-safe programs with nested locking. We have also presented
methods for checking whether a given program satisfies the conditions of scope
safety and well-nested locking.

Acknowledgment

We would like to thank anonymous referees for useful comments. This work was
supported by JSPS KAKENHI Grant Number JP15H05706 and JP16K16004.

18

References

1. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-
sensitive forward reachability analysis for concurrent programs with dynamic pro-
cess creation. In: Proceedings of VMCAI 2011. LNCS, vol. 6538, pp. 199–213 (2011)

2. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV. LNCS, vol. 3576, pp. 505–518.
Springer (2005)

3. Kobayashi, N.: HorSat2: A saturation-based higher-order model checker. http:
//www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2/

4. Kobayashi, N.: Type systems for concurrent programs. In: Proceedings of UNU/I-
IST 20th Anniversary Colloquium. LNCS, vol. 2757, pp. 439–453. Springer (2003)

5. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3), 20 (2013)
6. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-

order model checking. In: Proceedings of PLDI 2011. pp. 222–233 (2011)
7. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown

networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV.
LNCS, vol. 5643, pp. 525–539. Springer (2009)

8. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS. pp. 81–90 (2006)

9. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

10. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: Practical static race detection
for C. ACM Transactions on Programming Languages and Systems (TOPLAS)
33(1), Article 3 (Jan 2011)

11. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

12. Terauchi, T.: Checking race freedom via linear programming. In: Proceedings of
PLDI ’08. pp. 1–10. ACM, New York, NY, USA (2008)

13. Yasukata, K., Kobayashi, N., Matsuda, K.: Pairwise reachability analysis for higher
order concurrent programs by higher-order model checking. In: CONCUR 2014,
LNCS, vol. 8704, pp. 312–326 (2014)

19

Appendix

A Type System of the Target Language

This section defines a simple type system for the target language.

A type environment Γ is a map from variables to types. A type judgment
relation Γ ` e : τ for expressions is the least relation closed under the following
rules:

Γ ` () : ? (Term)

Γ ∪ {x : τ } ` x : τ (Var)

Γ ∪ {F : τ } ` F : τ (FVar)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(App)

Γ ` e : lock→ ?

Γ ` newi e : ?
(New)

Γ ` e1 : lock Γ ` e2 : ?

Γ ` acq(e1); e2 : ?
(Acq)

Γ ` e1 : lock Γ ` e2 : ?

Γ ` rel(e1); e2 : ?
(Rel)

Γ ` e1 : ? Γ ` e2 : ?

Γ ` spawn(ec); ep : ?
(Spawn)

Γ ` e : ?

Γ ` e` : ?
(Label)

A program p = {F1 x̃1 = e1, . . . , Fn x̃n = en } is well-typed under Γ if

Γ = {Fi 7→ τi1 → · · · → τiki → ? | i = 1, . . . , n }

and Γ ∪ {xi1 7→ τi1, . . . , xiki 7→ τiki } ` ei : ? holds for every i ∈ { 1, . . . , n }.

B Supplementary Material for Section 3

Let p be a program, fixed in this section.

20

B.1 Sequences of actions

This section formally defines the notion of actions and introduces an important
notion of independence, which we shall use in the proofs.

Recall that a thread ID ι is a sequence of natural numbers. We write ι v ι′

if ι is a prefix of ι′. Hence ι v ι′ means the thread ι is an ancestor of the thread
ι′.

We formally define the notion of actions, which has been given implicitly
as the set of labels of transitions. The set of actions is given by the grammar
a ::= • | $ | ` | new(κ, ι,m) | acq(κ, ι,m) | rel(κ, ι,m) | sp(ι). We use a as a
metavariable of actions. An action with the thread ID is a pair (ι, a) of a thread
ID and an action of the form

(ι, •), (ι, $), (ι, `),

(ι, new(κ, ι′,m)), (ι, acq(κ, ι′,m)), (ι, rel(κ, ι′,m)), (ι, sp(ι · s))

where s is a natural number and ι′ is an arbitrary thread ID. We use ξ and ζ as
metavariables of actions with the thread IDs. An action with the thread ID is
often simply called an action.

Let ξ be a sequence of actions. We write ξ�ι·s for the subsequence of ξ con-
sisting actions (ι′, a) of children of the thread ι · s (i.e. ι · s v ι′). The sequence
ξ�−(ι·s) is defined as the subsequence of ξ obtained by removing actions of chil-
dren of ι · s. We say ξ •-free if it does not contain an action of the form (ι, •).
We define ξ�−• as the subsequence of ξ obtained by removing •-actions.

Definition 9 (Independent action). Let ξ = (ι, a) and ξ′ = (ι′, a′). We say
that ξ and ξ′ dependent if either (1) ι = ι′, (2) a = sp(ι′), or (3) a′ = sp(ι). They
are independent if they are not dependent. If ξ and ξ′ are independent actions,
we write

ζ · ξ · ξ′ · ζ′ ∼1 ζ · ξ′ · ξ · ζ′

for every sequences ζ and ζ′ of actions. We define ∼ as the symmetric and
transitive closure of ∼1, which is an equivalence relation. Then ζ ∼ ζ′ means
that ζ′ is obtained from ζ by swapping consecutive independent actions several
times.

The next lemma says that a swapping of actions in a •-free subsequence can
be lifted to the original sequence.

Lemma 4. Let ξ′ and ζ′ be •-free sequences of actions and ξ be a sequence of
actions such that ξ�−• = ξ′. If ξ′ ∼ ζ′, then there exists ζ such that ξ ∼ ζ and
ζ�−• = ζ′.

Proof. It suffices to prove the result when ξ′ ∼1 ζ
′. Then

ξ′ = ξ′1 · · · · · ξ′i · ξ′i+1 · · · · · ξ′n′
ζ′ = ξ′1 · · · · · ξ′i+1 · ξ′i · · · · · ξ′n′

where ξ′i and ξ′i+1 are independent actions.

21

Let
ξ = ξ1 · · · · · ξj · ξj+1 · · · · · ξj+k−1 · ξj+k · · · · · ξn

where ξj is the action corresponding to ξ′i and ξj+k to ξ′i+1. Since ξ�−• = ξ′, we
know that ξj+1 · · · · · ξj+k−1 is a sequence of •-actions. Let ι be the thread ID of
action ξj+k = ξ′i+1. Let ξ′′ be a sequence obtained by moving every occurrence
of (ι, •) in ξj+1 · · · · · ξj+k−1 to a position before ξj and every occurrence of other
•-actions to a position after ξj+k. It is easy to show that ξ ∼ ξ′′ and ξ′′�−• = ξ′.

Now we can assume without loss of generality that the actions corresponding
to ξ′i ·ξ′i+1 are also consecutive in ξ. We obtain a desired sequence ζ by commuting
them. ut

B.2 Action tree representation of a transition sequence

This subsection gives a formal definition of the action tree of a given transition
sequence and discuss its properties.

Given a sequence ξ of actions, its action tree a(ξ) is defined by induction on
ξ as follows.

a(ε) := ⊥
a((ι, •) · ξ) := a(ξ)

a((ι, $) · ξ) := $ (if ξ = ε)

a((ι, `) · ξ) := ` (a(ξ))

a((ι, new(κ, ι′,m)) · ξ) := newκ (a(ξ))

a((ι, acq(κ, ι′,m)) · ξ) := acqκ (a(ξ))

a((ι, rel(κ, ι′,m)) · ξ) := relκ (a(ξ))

a((ι, sp(ι · s)) · ξ) := sp
(
a(ξ�−(ι·s))

)
(a(ξ�ι·s)) .

The function a is a partial function. So we have to ensure that it is defined
on sequences of actions of transition sequences. We gives a sufficient condition
for well-definedness of a(ξ).

Definition 10. Let ξ be a sequence of actions and ψ be a partial function from
thread IDs to natural numbers. We define the relation ψ B ξ by induction on ξ
as follows.

ψ B (ι, •) · ξ iff ι ∈ dom(ψ) and ψ B ξ

ψ B (ι, $) · ξ iff ι ∈ dom(ψ) and ψ{ι 7→ undef}B ξ
ψ B (ι, `) · ξ iff ι ∈ dom(ψ) and ψ B ξ

ψ B (ι, new(κ)) · ξ iff ι ∈ dom(ψ) and ψ B ξ

ψ B (ι, acq(κ)) · ξ iff ι ∈ dom(ψ) and ψ B ξ

ψ B (ι, rel(κ)) · ξ iff ι ∈ dom(ψ) and ψ B ξ

ψ B (ι, sp(ι · s)) · ξ iff ι ∈ dom(ψ) and s = ψι and ψ{ι 7→ s+ 1, ι · s 7→ 0}B ξ

(We define ι /∈ dom(ψ{ι 7→ undef}) for every ψ.)

22

Basically this tracks the live thread IDs and checks if every operation is made by
a live thread. It is clear that every sequence of actions obtained from a transition
sequence satisfies this relation for the appropriate ψ describing the live threads
in the first configuration.

Lemma 5. If {ι 7→ s}B ξ, then a(ξ) is defined

Proof. Easy induction on the length of ξ, using the fact that {ι 7→ s, ι′ 7→ s′}Bξ
implies {ι 7→ s}B ξ�−ι′ and {ι′ 7→ s′}B ξ�ι′ . ut

We write ξ
ab
= ξ′ if they are equivalent except for the concrete lock names.

Formally ξ
ab
= ξ′ is defined by the following rules:

ξ
ab
= ξ

(ι, new(κ, ι′,m′))
ab
= (ι, new(κ, ι′′,m′′))

(ι, acq(κ, ι′,m′))
ab
= (ι, acq(κ, ι′′,m′′))

(ι, rel(κ, ι′,m′))
ab
= (ι, rel(κ, ι′′,m′′))

This relation can be extended to sequences in the obvious way. We write ∼ab
= for

the composite of ∼ and
ab
= (i.e. ξ ∼ab

= ξ′ if and only if ∃ζ. ξ ∼ ζ ab
= ξ′).

Lemma 6. ∼ab
= is an equivalence relation. Furthermore ξi ∼

ab
= ξ′i for i = 1, 2

implies ξ1 · ξ2 ∼
ab
= ξ′1 · ξ′2.

Proof. It is an easy consequence of the fact that ξ1 · · · · · ξn
ab
= ξ′1 · · · · · ξ′n and ξi

and ξi+1 are independent implies ξ′i and ξ′i+1 are independent. ut

Roughly speaking, an action tree corresponds to an equivalence class of ∼ab
=.

We formally state and prove this observation.

Lemma 7. Let ξ and ζ be sequences of actions such that { ι 7→ s } B ξ and
{ ι 7→ s } B ζ. Suppose that ξ and ζ are •-free. Then a(ξ) = a(ζ) if and only if

ξ ∼ab
= ζ.

Proof. Given an action tree γ and a pair of a thread ID ι and a natural number
s, we define the canonical action sequence cι,s(γ) by induction on γ as follows:

cι,s(⊥) = ε

cι,s($) = (ι, $)

cι,s(` γ) = (ι, `) · cι,s(γ)

cι,s(newκ γ) = (ι, new(κ, ε, 1)) · cι,s(γ)

cι,s(acqκ γ) = (ι, acq(κ, ε, 1)) · cι,s(γ)

cι,s(relκ γ) = (ι, rel(κ, ε, 1)) · cι,s(γ)

cι,s(sp γp γc) = (ι, sp(ι · s)) · cι,s+1(γp) · cι·s,0(γc).

23

Here (κ, ε, 1) is a dummy concrete lock name.

We prove that ξ ∼ab
= cι,s(a(ξ)) by induction on the length of ξ. The only

non-trivial case is that ξ = (ι, sp(ι′)) · ξ′′. Since { ι 7→ s } B ξ, we know that
ι′ = ι · s. In this case,

a(ξ) = sp (a(ξ′′�−(ι·s))) (a(ξ′′�ι·s)).

Since { ι 7→ s } B ξ, the action (ι, sp(ι · s)) has at most one occurrence in ξ
and thus ξ′′�−(ι·s) does not have this action. Hence every action in ξ′′�−(ι·s) is
independent of every action in ξ′′�ι·s. As a result

ξ ∼ (ι, sp(ι · s)) · (ξ′′�−(ι·s)) · (ξ′′�ι·s).

By the induction hypothesis, we have ξ′′�−(ι·s) ∼
ab
= cι,s+1(a(ξ′′�−(ι·s))) and

ξ′′�ι·s ∼
ab
= cι·s,0(a(ξ′′�ι·s)). By Lemma 6, we have

ξ ∼ (ι, sp(ι · s)) · (ξ′′�−(ι·s)) · (ξ′′�ι·s)

∼ab
= (ι, sp(ι · s)) · cι,s+1(a(ξ′′�−(ι·s))) · cι·s,0(a(ξ′′�ι·s))

= cι,s(sp (a(ξ′′�−(ι·s))) (a(ξ′′�ι·s)))

= cι,s(a((ι, sp(ι · s)) · ξ′′)),

which implies ξ ∼ cι,s(a(ξ)).
The claim of the lemma follows from

ξ ∼ab
= cι,s(a(ξ)) ∼ab

= cι,s(a(ζ)) ∼ab
= ζ

because ∼ab
= is an equivalence relation (Lemma 6). ut

Because a(ξ) = a(ξ�−•), we obtain the following result as a corollary.

Corollary 1. Let ξ and ζ be sequences of actions { ι 7→ s }Bξ and { ι 7→ s }Bζ.

Then a(ξ) = a(ζ) if and only if ξ�−• ∼
ab
= ζ�−•.

B.3 Relaxed semantics

This subsection defines the relaxed semantics. A state in the relaxed semantics
(or simply a state) is a tuple of an expression, a natural number and a partial
function from K to N∗×N+. A configuration in the relaxed semantics (or simply
a configuration) is a finite partial map from thread IDs to states (in the relaxed
semantics). We use d for configurations in the relaxed semantics. The transition
rules are listed as follows.

F x̃ = e′ ∈ p

d] { ι 7→ (F ẽ, s, σ) }
ι,•
99Kp d] { ι 7→ ([ẽ/x̃]e′, s, σ) }

24

σ(κ) = (ι,m) σ′ = σ {κ 7→ (ι,m+ 1) }

d] { ι 7→ (newκ e, s, σ) }
ι,new(κ,ι,m+1)
99Kp d] { ι 7→ (e (κ, ι,m+ 1), s, σ′) }

∀ι′,m.(σ(κ) = (ι′,m)⇒ ι 6= ι′) σ′ = σ {κ 7→ (ι, 1) }

d] { ι 7→ (newκ e, s, σ) }
ι,new(κ,ι,1)
99Kp d] { ι 7→ (e (κ, ι, 1), s, σ′) }

d] { ι 7→ (acq(κ, ι′,m);e, s, σ) }
ι,acq(κ,ι′,m)
99Kp d] { ι 7→ (e, s, σ) }

d] { ι 7→ (rel(κ, ι′,m);e, s, σ) }
ι,rel(κ,ι′,m)
99Kp c] { ι 7→ (e, s, σ) }

d] { ι 7→ (spawn(ec);ep, s, σ) }
ι,sp(ι·s)
99Kp d]

{
ι 7→ (ep, s+ 1, σ),
ι · s 7→ (ec, 0, σ)

}

d] { ι 7→ (e`, s, σ) }
ι,`
99Kp d] { ι 7→ (e, s, σ) }

d] { ι 7→ ((), s, σ) }
ι,$
99Kp d

An important property of the relaxed semantics is that the set of sequences
of actions are closed under ∼.

Lemma 8. Let d be any configuration and assume that d
ξ
99Kp d′. Then, for

every ξ′ such that ξ ∼ ξ′, one has d
ξ′

99Kp d′.

Proof. It suffices to prove the following claim:

Let d1 be a configuration and ξ1 and ξ2 be independent actions. If d1
ξ1
99Kp

d2
ξ2
99Kp d3, then d1

ξ2
99Kp d′2

ξ1
99Kp d3.

Let (ιi, ai) = ξi (i = 1, 2). Then ι1 6= ι2 and those threads are in d1 by inde-
pendence of ξ1 and ξ2. Since the relaxed semantics does not synchronize two
threads at all, we can commute those actions resulting in the required transition
sequence. ut

25

B.4 Recursion scheme generating RelaxedATrees(p)

We define a non-deterministic HORS Gp = (Σ,N ,R, S). Although the HORS
constructed in the main text has pairs as a primitive, here we give a HORS
without pairs; the pair constructs are removed by using the standard encoding.

The alphabet is the same as the labels for nodes of an action trees, given by:

Σ = { newκ 7→ 1, acqκ 7→ 1, relκ 7→ 1 | κ ∈ K}
∪ {⊥ 7→ 0, $ 7→ 0, sp 7→ 2 }
∪ { ` 7→ 1 | ` ∈ Label } .

Given a type τ of the language, the type τ † for the recursion schemes is
defined as follows:

?† = o

lock† = (o→ o→ o)→ o→ o

(τ1 → τ2)† = τ †1 → τ †2 .

The type lock† takes (the Church encoding of) boolean o → o → o (of which
typical inhabitants are λxy.x and λxy.y) and returns an operation o→ o, which
is typically either acqκ or relκ in our translation.

A function symbol of the recursion scheme represents a function symbol of
the program, a lock operation or an operation about the pair constructs.

N = {F 7→ τ † | F is a function symbol of p typed with τ }

∪ {Newκ 7→ (lock† → o)→ o | κ ∈ K}
∪ {Acq 7→ lock† → o→ o }
∪ {Rel 7→ lock† → o→ o }
∪ {Spawn 7→ o→ o→ o }
∪ {End 7→ o }
∪ {Label ` 7→ o→ o | ` ∈ Label }

∪ {Pair 7→ (o→ o)→ (o→ o)→ (o→ o→ o)→ o→ o }
∪ {Fst 7→ o→ o→ o }
∪ {Snd 7→ o→ o→ o }

By using these function symbols, we can transform an expression of the
language into a term of the recursion scheme. The transformation is given by:

()† = End

x† = x

F † = F

(e1 e2)† = e†1 e
†
2

26

(newκ e)
† = New e†

(acq(e1); e2)† = Acq e†1 e
†
2

(rel(e1); e2)† = Rel e†1 e
†
2

(spawn(ec); ep)
† = Spawn e†p e

†
c

(e`)† = Label ` e
†

((κ, ι,m))† = Pair acqκ relκ.

The rewriting rules are given as follows:

R =

{
F x̃ = e†

F x̃ = ⊥

∣∣∣ (F x̃ = e) ∈ p
}

∪
{

Newκ x = newκ (x (Pair acqκ relκ))
Newκ x = ⊥

∣∣∣ κ ∈ K}
∪
{

Acq l x = lFst x
Acq l x = ⊥

}
∪
{

Rel l x = l Snd x
Rel l x = ⊥

}
∪
{

Spawn xp xc = spxp xc
Spawn xp xc = ⊥

}
∪
{

End = $
End = ⊥

}
∪
{

Label ` x = ` x
Label ` x = ⊥

∣∣∣ ` ∈ Label

}
∪ {Pair acq rel f x = f (acq x) (rel x) }
∪ {Fst x y = x }
∪ {Snd x y = y }

Given a term t of type o, we define L(t,Gp) as the language generated by Gp
using t as the initial term.

Lemma 9. If { ι 7→ (e, s, σ) }
ξ
99Kp c for some ι, s, σ and c, then a(ξ) ∈

L(e†,Gp).

Proof. By easy induction on the length of ξ.
Consider the case that ξ = (ι, sp(ι · s)) · ξ′. Then e = spawn(ec); ep and

e† = Spawn e†p e
†
c. Then a(ξ) = sp (a(ξ′�−(ι·s))) (a(ξ′�ι·s)) by the definition of the

action tree. Since ξ′ ∼ (ξ′�−(ι·s)) · (ξ′�ι·s), we have

{ ι 7→ (ep, s+ 1, σ), ι · s 7→ (ec, 0, σ) }
(ξ′�−(ι·s))·(ξ′�ι·s)

99Kp c

by Lemma 8. This can be decomposed into

{ ι 7→ (ep, s+ 1, σ) }
ξ′�−(ι·s)
99Kp cp

27

and

{ ι 7→ (ec, 0, σ) }
ξ′�ι·s
99Kp cc

with c = cp] cc. By the induction hypothesis, a(ξ′�−(ι·s)) ∈ L(e†p,Gp) and

a(ξ′�ι·s) ∈ L(e†c,Gp). Now we have

e† = Spawn e†p e
†
c −→ sp e†p e

†
c −→∗ sp (a(ξ′�−(ι·s))) (a(ξ′�ι·s))

as required.
Other cases can be proved similarly. ut

Lemma 10. If γ ∈ L(e†,Gp), for every ι and s, there exists a transition sequence

{ ι 7→ (e, s) }
ξ
99Kp c such that γ = a(ξ).

Proof. By induction on the structure of the expression e. ut

B.5 Proof of Theorem 3

We prove that ATrees(p) = RelaxedATrees(p) ∩ LSATrees under the assumption
that p is scope-safe.

It is easy to see that γ ∈ ATrees(p) implies γ ∈ RelaxedATrees(p) ∩ LSATrees.

Suppose that c0
ξ1−→p c1

ξ2−→p . . .
ξn−→p cn and γ = a(ξ). Then γ ∈

RelaxedATrees(p) is witnessed by the reduction sequence d0
ξ1
99Kp d1

ξ2
99Kp . . .

ξn
99Kp

dn is obtained by removing lock information from ci. Similarly the transition se-

quence { 0 7→ (γ, ε, 0, ∅) } = ĉ0
ξ1−→ ĉ1

ξ2−→ . . .
ξn−→ ĉn is constructed from it by

replacing each expression in ci to an appropriate action tree. In this step, we use
the assumption that the program is scope-safe. Since action trees do not have
any information of the concrete lock name, it has to be recovered from the ab-
stract lock name and the current scope as in the rules of the abstract transition
system. Scope-safety of the program ensures that recovered concrete names are
correct.

To prove the converse, we use the following lemma.

Lemma 11. Let p be a program that is not necessarily scope-safe. Let γ ∈
RelaxedATrees(p)∩LSATrees. Then there exist sequences ξ and ζ of actions such
that

– { 0 7→ (S, 0) } = d0
ξ
99Kp dn,

– { 0 7→ (γ, ε, 0, ∅) } ζ−→ ⊥̂, and

– ξ
ab
= ζ.

Proof. Let γ ∈ RelaxedATrees(p) ∩ LSATrees.
By the definition of LSATrees, we have ζ′ that satisfies the second condition

and γ = a(ζ′). We can assume without loss of generality that ζ′ is •-free. Sim-

ilarly, since γ ∈ RelaxedATrees(p), there exists ξ′ such that d0
ξ′

99Kp dn for some
configuration dn and γ = a(ξ′).

28

By Corollary 1, we have ξ′�−• ∼
ab
= ζ′�−• = ζ′ (since ζ′ is •-free). By

Lemma 4, there exists ξ such that ξ�−•
ab
= ζ′ and ξ ∼ ξ′. By Lemma 8, we

have d0
ξ
99Kp dn.

Now the difference of ξ and ξ′ is the concrete lock names and •-actions.

Since ĉ
(ι,•)
99Kp ĉ for every abstract configuration ĉ (provided that ι ∈ dom(ĉ)), by

inserting •-actions appropriately, we obtain ζ such that { 0 7→ (γ, ε, 0, ∅) } ζ−→ ⊥̂
and ξ

ab
= ζ. ut

Assume that γ ∈ RelaxedATrees(p) ∩ LSATrees and that p is scope-safe. Let

ξ = ξ1 . . . ξn and ζ = ζ1 . . . ζn be sequences of actions of Lemma 11 and d0
ξ1
99Kp

d1
ξ2
99Kp . . .

ξn
99Kp dn and { 0 7→ (γ, ε, 0, ∅) } = ĉ0

ζ1−→ ĉ1
ζ2−→ . . .

ζn−→ ĉn be the

associated transition sequences. Although Lemma 11 ensures only ξ
ab
= ζ, under

the assumption that p is scope-safe, one can prove that ξ = ζ. This is proved
by constructing configurations ci by merging di and ĉi, as well as “merged”,
reduction sequences as follows.

It is easy to prove by induction on i that

– dom(di) = dom(ĉi) and
– for every ι ∈ dom(di), if di(ι) = (e, s1, σ1) and ĉi(ι) = (γ, L, s2, σ2), then
σ1 = σ2 and s1 = s2.

Now the configuration ci is defined by

ci(ι) =

{
(e, L, s, σ) (if di(ι) = (e, s, σ) and ĉi(ι) = (γ, L, s, σ))

undefined (if ι /∈ dom(di) = dom(ĉi(ι))).

It is easy to show that ξi = ζi and

c0
ξ1−→p c1

ξ2−→p . . .
ξn−→p cn

by using scope-safety of the program.

B.6 Proof of Theorem 4

The goal of this subsection is to prove that { 0 7→ (γ, ε, 0, ∅) } ∗−→ ⊥̂ if and only
if as(γ) = (∅, ∅, ε, T, ∅). It is not difficult to prove the left-to-right direction. To
prove the converse, we prove a stronger claim by induction on the size of the
action trees.

Let ι be a thread ID and ĉ be an abstract configuration. If ĉ(ι) = (γ, L, s, σ),
then we define γ[ĉ, ι] = γ, L[ĉ, ι] = L, s[ĉ, ι] = s and σ[ĉ, ι] = σ. They are
undefined if ĉ(ι) is undefined. If ĉ is clear from the context, we write γι for γ[ĉ, ι]
and so on.

Definition 11. Let ĉ be an abstract configuration. It is consistent if it satisfies
the following conditions:

29

– If ι · s ∈ dom(ĉ), then either ĉ(ι) is undefined or sι > s.
– If ι1, ι2 ∈ dom(ĉ) and ι1 6= ι2, then Lι1 and Lι2 do not contain a common

element.
– If σι(κ) = (ι,m), then (κ, ι,m + 1) is fresh, i.e. there is no ι′ such that
σι′(κ) = (ι,m′) or Lι′ contains (κ, ι,m′) for some m′ > m.

– If σι(κ) = (ι′,m) with ι 6= ι′, then (κ, ι, 1) is fresh.

This is a property that holds for all abstract configurations reachable from the
initial one { ε 7→ (γ, ε, 0, ∅) }.

Let σ be a scope function, i.e. a partial function from abstract lock names κ
to pairs (ι,m) (such that (κ, ι,m) is the concrete lock name assigned to κ). When
(ι,m) = σ(κ), we write (κ, σ(κ)) to mean (κ, ι,m). For a sequence R = κ1 . . . κn
of abstract lock names, we write σ(R) for (κ1, σ(κ1)) . . . (κn, σ(κn)). For a set
A ⊆ K, we write σ(A) for { (κ, σ(κ)) | κ ∈ A }. For a relation G ⊆ K × K, we
write σ(G) for { ((κ, σ(κ)), (κ′, σ(κ′))) | (κ, κ′) ∈ G }.

Given an abstract configuration ĉ, let (A[ĉ, ι], Af [ĉ, ι], R[ĉ, ι], T [ĉ, ι], G[ĉ, ι]) :=
as(γ[ĉ, ι]) be the acquisition structure of the action tree of thread ID ι for every
ι ∈ dom(ĉ). If ĉ is clear from the context, we simply write as Aι and so on.

Before the proof of the key lemma, we formally define the notion of final
acquisition, which is used in the proof.

Definition 12. Let γ = acqκ γ
′ be an action tree starting from the acquisition

operation and assume (A,Af , R, T,G) = as(acqκ γ
′) and (A′, Af

′
, R′, T ′, G′) =

as(γ′). By the definition of the acquisition structure, there are two cases:

– R′ = R · κ.
– R′ = R = ε and {κ } = Af\Af ′.

In the latter case, this acquisition operation is called final.

Lemma 12. Let ĉ be a consistent configuration. Assume the following condi-
tions:

– σι(Rι) is a postfix of Lι for every ι ∈ dom(ĉ). We write Fι for the set of
concrete lock names that appears in Lι but not in σι(Rι).

– If Tι = $, then Fι = ∅.
– There is at most one thread ι such that Rι 6= ε.
– (Fι ∪ σι(Afι)) ∩ (Fι′ ∪ σι′(Afι′)) = ∅ if ι 6= ι′.
– Fι ∩ σι′(Aι′) = ∅ for every ι, ι′ ∈ dom(ĉ) (including the case that ι = ι′).
– Gĉ :=

⋃
ι∈dom(ĉ) σι(Gι) is acyclic.

Then ĉ
∗−→ ⊥̂.

Proof. We prove the claim by induction on the size
∑
ι∈dom(ĉ) size(γ[ĉ, ι]) of the

abstract configuration ĉ, where the size of an action tree is a number of its nodes
with labels other than ⊥. If the size of the abstract configuration is 0, then
γ[ĉ, ι] = ⊥ for every ι ∈ dom(ĉ), which itself is one of ⊥̂ configurations. Assume
that the size of configurations is not zero.

There are two cases:

30

1. There exists ι such that (1) the root of γ[ĉ, ι] is not a final acquisition nor ⊥
and (2) Rι′ = ε for every ι′ ∈ dom(ĉ) with ι′ 6= ι.

2. Rι = ε and the root of γ[ĉ, ι] is a final acquisition or ⊥ for every ι ∈ dom(ĉ).

Note that Rι 6= ε implies that the root of γ[ĉ, ι] is not a final acquisition. Hence
every abstract configuration that satisfies the condition of the lemma is either
(1) or (2). In case (1), we execute the thread ι in the next step. In case (2), there
exists a minimal element in { (κ, σ[ĉ, ι](κ)) | ι ∈ dom(ĉ), γ[ĉ, ι] = acqκ γ

′ } with
respect to G+

ĉ since this is a finite set and Gĉ is acyclic. Then we execute in the
next step the thread that acquires such a minimal lock.

Case (1) and γ[ĉ, ι] = $: Then Tι = $ and Rι = ε. By the condition, Fι = ∅,
which means that L[ĉ, ι] = ε. Hence ĉ

(ι,$)−−−→ ĉ{ι 7→ undef}. It is easy to see that
ĉ{ι 7→ undef} satisfies all the conditions (since we just remove a thread).

Case (1) and γ[ĉ, ι] = ` γ′: Since (ι, `) cannot be blocked, we have ĉ
(ι,`)−−−→ ĉ′

for some ĉ′. The abstract configuration ĉ′ satisfies the conditions because all the
data of ĉ′ are the same as ĉ except for γ[ĉ′, ι].

Case (1) and γ[ĉ, ι] = newκ γ
′: Since the action (ι, new(κ)) cannot be blocked,

we have ĉ
(ι,new(κ))−−−−−−→ ĉ′ for some ĉ′. The abstract configuration ĉ′ satisfies the

conditions because the lock (κ, ι,m) generated by this operation is fresh (be-
cause the abstract configuration ĉ is consistent), and thus it can only appear in
σ[ĉ′, ι](A[ĉ′, ι]) and σ[ĉ′, ι](Af [ĉ′, ι]).

Case (1) and γ[ĉ, ι] = acqκ γ
′: We first show that (κ, σι(κ)) /∈ locked(ĉ). This

means that (κ, σι(κ)) /∈
⋃
ι′∈dom(ĉ)(Fι′ ∪σι′(Rι′)) (here by abuse of notation, Rι′

means the set of abstract lock names appearing in the sequence Rι′). For ι′ 6= ι,
since Rι′ = ε, the set of locks in Lι′ is Fι′ . By the definition of the acquisition
structure, we have κ ∈ Aι. By the conditions, σι(Aι) ∩ Fι′ = ∅. Now it remains
to prove that κ /∈ Rι. By the definition of the acquisition structure and since
this acquisition is not final, by writing (A′, Af

′
, R′, T ′, G′) = as(γ′), we have

R′ = Rι · κ. Since R′ cannot have two occurrences of κ, this means that Rι does

not contain κ. Hence ĉ
(ι,acq(κ))−−−−−−→ ĉ′ for some ĉ′. It is easy to see that ĉ′ satisfies

the conditions since A[ĉ′, ι] ⊆ A[ĉ, ι], R[ĉ′, ι] = R[ĉ, ι] · κ, γ[ĉ′, ι] = γ′, and all
other components are the same as ĉ.

Case (1) and γ[ĉ, ι] = relκ γ
′: By the definition of the acquisition structure,

we have Rι = R′ · κ. Since σ[ĉ, ι](Rι) is a postfix of L[ĉ, ι], the last element of

L[ĉ, ι] is (κ, σ(κ)). Hence ĉ
(ι,rel(κ))−−−−−→ ĉ′ for some ĉ′. It is easy to see that ĉ′ satisfies

all the conditions.

Case (1) and γ[ĉ, ι] = sp γp γc: Since (ι, sp(ι · sι)) cannot be blocked, we have

ĉ
(ι,sp(()ι·sι))−−−−−−−−→ ĉ′ for some ĉ′. The abstract configuration ĉ′ satisfies the condition

because each component datum of ĉ′ is the same as ĉ or obtained by dividing
data of the thread ID ι into two.

Case (2): Let ι be the ID of the thread that acquires the (chosen) minimal
concrete lock with respect to G+

ĉ . Let κ be the abstract lock name that the
thread ι acquires.

31

We first show that (κ, σι(κ)) /∈ locked(ĉ) and thus ĉ
(ι,acq(κ))−−−−−−→ ĉ′ for some

ĉ′. Since Rι′ = ε for every ι ∈ dom(ĉ), it suffices to see that (κ, σι(κ)) /∈⋃
ι′∈dom(ĉ) Fι′ . By the definition of the acquisition structure, we have κ ∈ Aι.

By the conditions, for every ι′ ∈ dom(ĉ), we have Aι ∩ Fι′ = ∅ and thus
(κ, σι(κ)) /∈ Fι′ .

It suffices to prove that ĉ′ satisfies the conditions. What is difficult is to show
that F [ĉ′, ι]∩σ[ĉ′, ι′](A[ĉ′, ι′]) = ∅ for every ι′ ∈ dom(ĉ′). It suffices to show that
(κ, σι(κ)) /∈ σ[ĉ′, ι′](A[ĉ′, ι′]) for every ι′ ∈ dom(ĉ).

– Suppose that ι = ι′. Since this acquisition is final, G[ĉ, ι] ⊇ {κ}×A[ĉ′, ι]. By
the conditions, G[ĉ, ι] is acyclic. This means that κ /∈ A[ĉ′, ι].

– Suppose that ι 6= ι′ and γ[ĉ, ι′] = γ[ĉ′, ι′] = ⊥. Then A[ĉ′, ι′] = ∅.
– Suppose otherwise. Then ι 6= ι′ and γ[ĉ, ι′] = γ[ĉ′, ι′] = acqκ′ γ

′
ι′ , where ι′

is an final acquisition. Hence G[ĉ, ι′] = G[ĉ′, ι′] ⊇ {κ′} × (A[ĉ′, ι′]\{κ′}). By
the construction, (κ, σι(κ)) is minimal with respect to Gĉ ⊇ σ[ĉ, ι′](G[ĉ, ι′]).
This means that (κ, σι(κ)) /∈ σι′(A[ĉ′, ι′]\{κ′}). What remains is to show
that (κ, σι(κ)) 6= (κ′, σι′(κ

′)). Since both acquisitions are final, κ ∈ Af [ĉ, ι]
and κ′ ∈ Af [ĉ, ι′]. By the conditions, σι(A

f [ĉ, ι])∩σι′(Af [ĉ, ι′]) = ∅, and thus
(κ, σι(κ)) 6= (κ′, σι′(κ

′)).
ut

Hence as(γ) = (∅, ∅, ε, T, ∅) implies { 0 7→ (γ, ε, 0, ∅) } ∗−→ ⊥̂.

C Proof of Lemma 3

(⇒) We prove the contraposition. Assume that p is not scope-safe or not with

nested locking. Let c0
ι1,a1−−−→p · · ·

ιn,an−−−→p cn
ιn+1,an+1−−−−−−→p cn+1 be a transition

sequence in which only the last step violates the requirements. Let X be the
set of concrete lock names consisting of all but the one used in the last step.
Let γ be the labeled action tree generated by the pair of the above transition
sequence and X . Obviously γ ∈ L(GABp). Since p behaves as if it were a scope-
safe program with nested locking for the first n-steps, the corresponding action
tree is lock-sensitive, i.e. γ ∈ LSATrees′. Since the last step violates scope-safety
or well-nestedness of locking, γ ∈ N ∪ S. Hence γ ∈ (GABp ∩ LSATrees′) ∩ (N ∪ S)
and thus it is not empty.

(⇐) Assume that p is a scope-safe program with nested locking and let
γ ∈ (L(GABp) ∩ LSATrees′) ∩ (N ∪ S). By definition of LSATrees′, we have a
one-hole tree context C and an action tree γ0 with exactly one non-⊥ node
such that γ = C[γ0] and C[⊥] ∈ LSATrees. By Theorem 4, there is a transition

sequence c0
ι1,a1−−−→p · · ·

ιn,an−−−→p cn such that C[⊥] = a((ι1, a1) . . . (ιn, an)). Since
γ ∈ N∪S, a step in this transition sequence or the next step from cn described by
γ0 violates scope-safety or well-nestedness of locking. This means that p violates
these conditions. A contradiction.

32

