
An Intersection Type System for Deterministic
Pushdown Automata

Takeshi Tsukada1 and Naoki Kobayashi2

1 Tohoku University
2 University of Tokyo

Abstract. We propose a generic method for deciding the language inclu-
sion problem between context-free languages and deterministic context-
free languages. Our method extends a given decision procedure for a
subclass to another decision procedure for a more general subclass called
a refinement of the former. To decide L0 ⊆ L1, we take two additional
arguments: a language L2 of which L1 is a refinement, and a proof of
L0 ⊆ L2. Our technique then refines the proof of L0 ⊆ L2 to a proof
or a refutation of L0 ⊆ L1. Although the refinement procedure may
not terminate in general, we give a sufficient condition for the termina-
tion. We employ a type-based approach to formalize the idea, inspired
from Kobayashi’s intersection type system for model-checking recursion
schemes. To demonstrate the usefulness, we apply this method to obtain
simpler proofs of the previous results of Minamide and Tozawa on the
inclusion between context-free languages and regular hedge languages,
and of Greibach and Friedman on the inclusion between context-free
languages and superdeterministic languages.

Update

– [5th September 2016] Correction of the definition of reading mode

1 Introduction

The language inclusion problem, which asks whether L0 ⊆ L1 for languages L0

and L1, is a fundamental problem in the field of formal language theory. We
are interested in its decidability, mainly motivated by applications to program
verification [1, 7, 12]. We consider the case that L0 and L1 range over context-
free languages. It is well known that the inclusion L0 ⊆ L1 is undecidable for
context-free languages L0 and L1. For some subclasses of context-free languages,
however, the inclusion is decidable [3].

In the present paper, we propose a generic method for deciding the inclusion
problem. Our method extends a decision procedure for a subclass of context-
free languages to another decision procedure for a more general subclass. For
example, consider the languages consisting of open and close tags, like XML
documents. It is known to be decidable whether a given context-free language
is included in the Dyck language, which is the set of all words consisting of

correctly nested tags. Using our method, we can extend this result to obtain a
new proof of the decidability of inclusion between context-free languages and
regular hedge languages [12].

Our method can be outlined as follows. Suppose that a decision procedure
is given, which takes a language L0 and decides whether L0 ⊆ L2 for a fixed
language L2 (in the example above, the language of all correctly nested tags).
We assume that the procedure returns a “proof” of L0 ⊆ L2 if it is the case. By
using this procedure, our method provides a way of deciding whether L0 ⊆ L1,
where L1 is a subset of L2, called a refinement [19] of L2 (in the above example,
a regular hedge language). To decide L0 ⊆ L1, we first decide whether L0 ⊆ L2,
using the decision procedure. If L0 ⊈ L2, we conclude L0 ⊈ L1. If L0 ⊆ L2,
the procedure returns a “proof” of it, and we decide the inclusion L0 ⊆ L1 by
refining the “proof” of L0 ⊆ L2.

To formalize the idea, we employ a type-based approach inspired by Kobayashi’s
intersection type system [7] for the model checking of higher-order recursion
schemes. For each deterministic context-free language Li, we develop a type
system characterizing context-free grammars G such that LG ⊆ Li, i.e., a type
system Ti such that G is typable in Ti if and only if LG ⊆ Li. Then, the inclusion
problem LG ⊆ Li is reduced to the typability of G in Ti. We check it by (i) first
checking whether G is typable in a “simpler” type system T2, and (ii) if G is
typable in T1, enumerating “refinements” of the type derivation of T2 ⊢ G and
checking whether there exists a type derivation for G in T1 among them. (We will
substantiate the meaning of “simpler type system” and “refinements” in later
sections.)

We demonstrate the usefulness of the method by giving simpler proofs of
two previous decidability results: (1) The result of Minamide and Tozawa [12]
on the inclusion between context-free languages and regular hedge languages; (2)
The result of Greibach and Friedman [5] on the inclusion between context-free
languages and superdeterministic languages, which is, to our knowledge, one of
the strongest results about the inclusion problems.

The rest of the paper is organized as follows. In Section 2, we define some
notions and notations about context-free grammars and pushdown automata. In
Section 3, we construct an intersection type system characterizing the inclusion
problem. In Section 4, we develop a procedure which refines a type derivation and
we give a sufficient condition for the termination of the procedure. In Section 5,
we apply our method to prove some decidability results. In Section 6, we discuss
the related work and we conclude in Section 7.

2 Preliminaries

Context-free Grammars We present context-free grammars for words in the form
of (a special case of) context-free tree grammars generating monadic trees (i.e.,
trees of the form a1(a2(. . . (an($)) . . .))). The definition is consistent with the
standard definition of the context-free grammars.

We use a special letter $, which can occur only at the end of a word, and
distinguish between two kinds of words: those that end with $, called terminat-
ing words, and those that end with a normal letter, called normal words (or
simply, words). A sort κ is o describing terminating words, or o → o describing
normal words. A normal word w can be considered as a function that takes a
terminating word w′$ and returns the terminating word ww′$; that is why we
assign a function sort to normal words. A context-free grammar (CFG, for short)
is a quadruple G = (N , Σ,R, S), where:

1. N is a finite set of symbols called non-terminals. They have the sort o → o.
Non-terminals are ranged over by F .

2. Σ is a finite set of symbols called terminals. We use metavariables a and b
for terminals. They also have the sort o → o.

3. R is a set of rewriting rules of the form F x → t, where x is a variable of the
sort o and t is a term of the form α1(α2(. . . (αn(x)) . . .)) with αi ∈ Σ ∪ N .
There can be more than one rule for the same non-terminal.

4. S is a distinguished non-terminal, called the initial symbol.

We use t and s as metavariables of terms and α as a metavariable ranging over
Σ ∪N . The rewriting relation ⇒R is defined by:

F s ⇒R t[s/x] if (F x → t) ∈ R α t ⇒R α t′ if t ⇒R t′

Here t[s/x] is the term obtained by substituting s for x in t. We write ⇒∗
R for

the reflexive and transitive closure of ⇒R. We often omit R if it is clear from
the context. For a given non-terminal F , we define the language generated by F
as LG(F) = {a1a2 . . . an ∈ Σ∗ | F $ ⇒∗ a1(a2(. . . (an($)) . . .))}. The language
generated by G, written LG , is LG(S).

Example 1. For a given alphabet Σ, we define the set of open tags Σ́ = {á | a ∈
Σ} and close tags Σ̀ = {à | a ∈ Σ}. Let G0 = ({S, Fa, Fb}, Σ́0∪ Σ̀0,R, S), where

Σ0 = {a,b} and R = {S x → x, S x → á(Fa(x)), S x → Fb(b̀(x)), Fa x →
S(à(x)), Fb x → b́(S(x))}. The language LG consists of words of the form
á1á2 . . . ánàn . . . à1, where ai ∈ {a,b} for all 1 ≤ i ≤ n.

The rules of this CFG can be written in the standard notation as:

S → ε | áFa | Fb b̀, Fa → S à, Fb → b́S,

where ε denotes the empty word. ⊓⊔

Pushdown Automaton A pushdown automaton (PDA, for short) is a quadruple
M = (Q,Σ, Γ, δ), where (1) Q is a finite set of states; (2) Σ is an alphabet;
(3) Γ is a finite set of stack symbols (we use metavariables A and B for stack
symbols), and (4) δ ⊆ Q× Γ × (Σ ∪ {ε})×Q× Γ ∗ is a transition relation. We

use Ã and B̃ to denote (possibly empty) sequences of stack symbols. For q ∈ Q,

A ∈ Γ and a ∈ Σ ∪ {ε}, we define δ(q,A, a) = {(q′, Ã′) | (q, A, a, q′, Ã′) ∈ δ}. A
pushdown automaton is deterministic if for any q ∈ Q, A ∈ Γ and a ∈ Σ, the
set δ(q,A, a) ∪ δ(q, A, ε) has exactly one element. In the rest of the paper, we
consider only deterministic pushdown automata.

We call an element of Q × Γ ∗ a configuration. If (q, A, a, q′, Ã′) ∈ δ (here

a ∈ Σ∪{ε}), we write (q, B̃A) ⊩a
M (q′, B̃Ã′). We say a configuration c = (q, B̃A)

is in reading mode if
∪

a∈Σ(q, A, a) ̸= ∅ (note that a configuration with the empty
stack is not a reading mode).3 For configurations c and c′ in reading mode and
a ∈ Σ, we write c ⊨a

M c′ if

c ⊩a
M d1 ⊩ε

M d2 ⊩ε
M · · · ⊩ε

M dn ⊩ε
M c′ ⊮ε

M .

For w = a1a2 . . . an ∈ Σ∗, we write c ⊨w
M c′ if c ⊨a1

M d1 ⊨a2

M d2 ⊨a3

M · · · ⊨an

M c′.

For a given configuration c in reading mode and a given set F of configura-
tions in reading mode, we define LM (c,F) = {w ∈ Σ∗ | ∃c′ ∈ F . c ⊨w

M c′}. Here
c indicates the initial configuration and F the set of accepting configurations.

Example 2. Recall Σ0 and G0 defined in Example 1. We define A2 = ⟨{q}, Σ́0 ∪
Σ̀0, {⋆}, δA2⟩, where δA2 = {(q, ⋆, á, q, ⋆⋆), (q, ⋆, à, q, ε) | a ∈ Σ0}. The automaton
A2 counts and records the difference between the numbers of open tags and
close tags, ignoring their labels. Let L = LA2((q, ⋆), {(q, ⋆)}). Then L is the

set of all balanced tags, e.g., áb̀ ∈ L but áàb̀b́ /∈ L. It is obvious that LG0 ⊆
LA2((q, ⋆), {(q, ⋆)}).

We define a different PDA A1 = ⟨{q1, q2}, Σ́0 ∪ Σ̀0, Σ ∪ {⊥}, δA1⟩, where
δA1 = {(q1, A, á, q1, Aa) | A ∈ Σ0∪{⊥}, a ∈ Σ0}∪{(q1, a, à, q2, ε), (q2, a, à, q2, ε) |
a ∈ Σ0}. In addition to counting the difference of open tags and close tags, A1

records labels of open tags on its stack, and checks if end tags are already read,
by using its state. Let L′ = LA1((q1,⊥), {(q1,⊥), (q2,⊥)}). Then L′ is the set of
all words of the form á1á2 . . . ánàn . . . à2à1, where ai ∈ Σ0. Thus LG0 = L′. ⊓⊔

3 Type System

We construct a type system TM for each PDA M which characterizes the CFGs
generating languages accepted by M . In the rest of this section, we fix a PDA
M and discuss the definition and properties of the type system TM .

The syntax of types is defined by: τ ::= c |
∧
Θ → c, where c ranges over

configurations of M in reading mode and Θ is a (possibly infinite) set of configu-
rations in reading mode. We often abbreviate

∧
{d} → c as d → c. We say a type

c has the sort o (written as c :: o) and a type
∧

Θ → c has the sort o → o (written
as

∧
Θ → c :: o → o). Intuitively, the type c is for terminating words accepted

from c (by ignoring $ at the end). Interpretations of → and
∧

are standard:
d → c describes functions from d to c and c1

∧
c2 describes terminating words

accepted from the both of c1 and c2. Thus a normal word w = a1 . . . an, which
can be considered as a function λx. a1(a2(. . . (an(x)) . . .)), has a type d → c if
c ⊨a1a2...an

M d.

3 [5th September 2016: Correction] As discussed in [21], the previous definition of the
notion of reading mode was wrong. We are grateful to Uezato and Minamide for
pointing out this.

A type environment is a (possible infinite) set of bindings of the form x : τ
or F : τ . We allow multiple bindings for the same variable (or the same non-
terminal), as in {x : τ1, x : τ2}. We often omit curly brackets, and simply write
x1 :τ1, . . . , xn :τn for {x1 :τ1, . . . , xn :τn}. We abbreviate {x :c | c ∈ Θ} as x :

∧
Θ.

We define ∆(x) = {τ | x : τ ∈ ∆}. A type environment ∆ is well-formed if it
respects the sort, i.e., x : τ ∈ ∆ implies τ :: o and F : τ ∈ ∆ implies τ :: o → o.
We assume that all type environments appearing in the sequel are well-formed.

The typing rules are listed as follows.

x : τ ∈ ∆

∆ ⊢M x : τ

F : τ ∈ ∆

∆ ⊢M F : τ

∆ ⊢M t1 :
∧

Θ → c
∆ ⊢M t2 : d (for all d ∈ Θ)

∆ ⊢M t1 t2 : c

c ⊨a
M c′

∆ ⊢M a : c′ → c

These are standard rules for intersection type systems except for the last rule for
constants, which is inspired by Kobayashi’s type system [7]. Types of constants
depend on the transition rule of the automaton, as explained below. Assume
c ⊨a

M c′. Then for any (normal) word w accepted from c′, aw is accepted from
c. By using type-based notations, for any (terminated) word w($) : c′, we have
a(w($)) : c. Thus a can be considered as a function of type c′ → c.

We say that a type environment ∆ is an invariant of the rules R, written
∆ ⊢M R, if ∆,x :

∧
Θ ⊢M t : c holds for all F :

∧
Θ → c ∈ ∆ and F x → t ∈ R.

We write ∆ ⊢M (R, S) :
∧
Θ → c if ∆ ⊢M R and ∆, $:

∧
Θ ⊢M S$: c (in the

type system, $ is treated as a variable).

Theorem 1. Let G = (N , Σ,R, S) be a CFG, M be a PDA, c be a configuration
of M and F be a set of configurations of M . Then LG(S) ⊆ LM (c,F) if and
only if ∆ ⊢M (R, S) :

∧
F → c for some type environment ∆.

Proof. The “if” direction follows from the facts that typing is preserved by
reductions of S$, and that $:

∧
F ⊢M w$: c implies w ∈ LM (c,F). For the other

direction, let ∆ = {F :
∧

Θ → d | LG(F) ⊆ LM (d,Θ)}. ⊓⊔

By Theorem 1, the pair of the initial configuration c and the set F of
accepting configurations can be identified with the type

∧
F → c. We call

the type ι =
∧
F → c the initial type and write LM (ι) for LM (c,F). When

∆ ⊢M (R, S) : τ , the environment ∆ is called a witness of ⊢M (R, S) : τ .
We introduce a partial order on witnesses and show the existence of the

minimum witness.

Definition 1. The refinement ordering ⊑ is the smallest partial order that sat-
isfies: (1) Θ1 ⊑ Θ2 if Θ1 ⊆ Θ2, (2) (

∧
Θ1 → c1) ⊑ (

∧
Θ2 → c2) if c1 = c2 and

Θ1 ⊑ Θ2, and (3) ∆1 ⊑ ∆2 if ∆1(x) ⊑ ∆2(x) for every x. ⊓⊔

Lemma 1. Let G = (N , Σ,R, S) be a CFG, M be a PDA and ι be its initial
type. Assume that LG(S) ⊆ LM (ι). Then the set of witnesses of ⊢M (R, S) : ι,
i.e., {∆ | ∆ ⊢M (R, S) : ι}, has the minimum element with respect to ⊑.

Proof. Let ι =
∧

Θ → c. For a non-terminal F , we define pre(F) = {w | S$ ⇒∗
R

wFv$}. Let ∆0 = {F :
∧
Θ′ → c′ | ∃w ∈ pre(F). c ⊨w

M c′ and Θ′ = {d′ | ∃u ∈

LG(F). c′ ⊨u
M d′}}. Then ∆0 ⊢M (R, S) : ι and ∆0 is minimum: See Appendix A

for more details. ⊓⊔

Example 3. Let G0 be the CFG defined in Example 1, A2 be the PDA defined
in Example 2 and ι2 = (q, ⋆) → (q, ⋆). Since LG0 ⊆ LA2(ι2), by Theorem 1,
there is ∆ such that ∆ ⊢A2 (R, S) : ι2. The minimum witnesses is given by

{S : (q, Ã) → (q, Ã), Fa : (q, Ã) → (q, Ã⋆), Fb : (q, Ã⋆) → (q, Ã) | Ã ∈ {⋆}+}, where
{⋆}+ is the set of non-empty sequences of ⋆. ⊓⊔

Note that a minimum type environment may be infinite as in Example 3. In
the rest of this section, we develop a way to finitely describe (some of) infinite
type environments.

An important property of pushdown automata is that only the top of the
stack affects its transition. Especially, we can add any stack symbols to the
bottom, preserving the transition. For example, let A1 be the automaton de-
fined in Example 2 and w = áàb̀. Then we have a transition (q1,bbb) ⊨w

A1

(q2,bb). By adding ⊥aa to the bottom of the stack, we obtain (q1,⊥aabbb) ⊨w
A1

(q2,⊥aabb). More generally, for any sequence Ã of stack symbols, we have

(q1, Ãbbb) ⊨w
A1

(q2, Ãbb). This does not depend on the choice of w, i.e., for

any w such that (q1,bbb) ⊨w
A1

(q2,bb), we have (q1, Ãbbb) ⊨w
A1

(q2, Ãbb).
We will formally state this fact in terms of intersection types (see Lemma 2).

Definition 2. For a given (possible empty) sequence B̃ of stack symbols and a

given configuration (q, Ã), we define the stack extension (q, Ã) ⇑ B̃ as (q, B̃Ã).

We define (Θ ⇑ B̃) = {c ⇑ B̃ | c ∈ Θ} for the set of configurations, (
∧

Θ → c) ⇑
B̃ =

∧
(Θ ⇑ B̃) → (c ⇑ B̃) for the type, ∆ ⇑ B̃ = {x : (τ ⇑ B̃) | x : τ ∈ ∆} for the

type environment and (∆ ⊢ t : τ) ⇑ B̃ = (∆ ⇑ B̃) ⊢ t : (τ ⇑ B̃) for the judgement.

We define ∆⇑ = ∪B̃(∆ ⇑ B̃). ⊓⊔

Lemma 2. If ∆ ⊢M t : τ , then for any B̃, we have (∆ ⊢M t : τ) ⇑ B̃.

Proof. Easy induction on ∆ ⊢M t : τ . ⊓⊔

We write ∆ ⊢⇑
M R, read “∆ is an invariant of R up-to stack extensions”, if

for every F :
∧
Θ → c ∈ ∆ and F x → t ∈ R, we have (∆⇑), x :

∧
Θ ⊢M t : c.

Note that while F :
∧
Θ → c is chosen from ∆, the environment to type the body

of F is ∆⇑. The judgement ∆ ⊢⇑
M (R, S) :

∧
Θ → c is defined as ∆ ⊢⇑

M R and
(∆⇑), $:

∧
Θ ⊢M S$: c.

By using this up-to technique, we can sometimes (but not always) finitely
describe a witness type environment as shown in the example below.

Example 4. Recall Example 3. We have∆ ⊢⇑
A2

(R, S):ι2, where∆ = {S :(q, ⋆) →
(q, ⋆), Fa : (q, ⋆) → (q, ⋆⋆), Fb : (q, ⋆⋆) → (q, ⋆)}. Note that ∆ is a finite set. ⊓⊔

This up-to technique is sound in the sense that if a CFG is typable up-to
stack expansions, then it is typable without using the up-to technique.

Theorem 2. ∆ ⊢⇑
M (R, S) : ι implies (∆⇑) ⊢M (R, S) : ι.

Proof. We should show that (∆⇑) ⊢M R and (∆⇑), $:
∧
Θ ⊢M S$: c, where

ι =
∧

Θ → c. The latter comes from the assumption. To show the former, assume

F :τ ∈ (∆⇑) and F x → t ∈ R. Then we have F :σ ∈ ∆ and τ = (σ ⇑ Ã) for some

σ and Ã. Let σ =
∧
Ξ → d. Then τ =

∧
(Ξ ⇑ Ã) → (d ⇑ Ã). We should show

that (∆⇑), (x :
∧
Ξ ⇑ Ã) ⊢M t :(d ⇑ Ã). By the assumption, (∆⇑), x :

∧
Ξ ⊢M t :d.

By the previous lemma, we have ((∆⇑) ⇑ Ã), (x:
∧
Ξ ⇑ Ã) ⊢M t:(d ⇑ Ã). Because

((∆⇑) ⇑ Ã) ⊆ (∆⇑)⇑ = ∆⇑, we conclude (∆⇑), (x :
∧

Ξ ⇑ Ã) ⊢M t : (d ⇑ Ã). ⊓⊔

4 Refining Witnesses

It is in general difficult (in fact undecidable) to check whether a given CFG G
is typable in TM1 for a given PDA M1, so that we first consider a simpler PDA
M2 and check whether G is typable in TM2 . If we choose M2 so that (i) we have
a witness of typability of G in TM2 and (ii) M1 is a refinement of M2, then G
is typable in TM1 if and only if there is a witness that is a refinement of the
witness in TM2 (Section 4.1). Moreover, if a witness in TM2 is finite, then the
set of its refinements is a finite set. Thus, we can decide the typability in TM1

by exhaustively searching a witness from the (finite) set of refinements of the
witness in TM2

(Section 4.2).

4.1 Refinements of Automata

We first define the notion of refinements of automata. As we will see below, if
M1 is a refinement of M2, then M2 is a good over-approximation of M1.

Definition 3 (Refinement of Automata). Let M1 = ⟨Q1, Σ, Γ1, δ1⟩ and
M2 = ⟨Q2, Σ, Γ2, δ2⟩ be pushdown automata. A homomorphism f : M1 → M2

is a pair of mappings fQ : Q1 → Q2 and fΓ : Γ1 → Γ2 such that for any
(q, A, a, q′, B̃) ∈ δ1, (f

Q(q), fΓ (A), a, fQ(q′), fΓ (B̃)) ∈ δ2, where f
Γ (B1B2 . . . Bn) =

fΓ (B1)f
Γ (B2) . . . f

Γ (Bn). We often omit superscripts Q and Γ , and simply

write f(q) and f(Ã). ⊓⊔

The homomorphism f :M1 → M2 can be naturally extended to mappings on
configurations, types, type environments and judgements, e.g., the mapping on
configurations is defined by f((q, Ã)) = (fQ(q), fΓ (Ã)).

When there is a homomorphism f :M1 → M2, we say M2 is an approximation
of M1 and M1 is a refinement of M2. A type τ1 in TM1 is a refinement of τ2 in
TM2 if f(τ1) ⊑ τ2. Refinements of type environments are defined similarly. We
can always find a homomorphism f :M1 → M2 if it exists, since both of Q1 → Q2

and Γ1 → Γ2 are finite. We write f : (M1, ι1) → (M2, ι2) if f : M1 → M2 and
f(ι1) = ι2. The next lemma justifies to say that M2 is an (over-)approximation
of M1.

Lemma 3. If f : (M1, ι1) → (M2, ι2), then LM1(ι1) ⊆ LM2(ι2). ⊓⊔

Example 5. Let A1 and A2 be automata defined in Example 2. Then A1 is a
refinement of A2 by a homomorphism (hQ, hΓ) : A1 → A2 given by hQ(q1) =
hQ(q2) = q and hΓ (a) = hΓ (b) = hΓ (⊥) = ⋆. ⊓⊔

In the following, we fix two pushdown automata (with their initial types)
(M1, ι1) and (M2, ι2) and a homomorphism f : (M1, ι1) → (M2, ι2) between
them. For readability, we write T1 instead of TM1 , L1 instead of LM1 and so on.

Validity of type judgements and minimality of a witness are preserved by f .

Theorem 3. Let G = (N , Σ,R, S) be a CFG, M1 and M2 be PDAs, ι1 and ι2
be their initial types and f : (M1, ι1) → (M2, ι2) be a homomorphism.

1. If ∆ ⊢M1 (R, F) : ι1, then f(∆) ⊢M2 (R, F) : ι2.
2. If ∆ is the minimum witness of ⊢M1 (R, F) : ι1, then f(∆) is the minimum

witness of ⊢M2 (R, F) : ι2.

Proof. It is easy to prove that ∆ ⊢M1 t : τ implies f(∆) ⊢M2 t :f(τ) by induction
on t. The first part of the claim is an easy consequence of this proposition. The
second part is clear from the construction of the minimum witness in the proof
of Lemma 1. ⊓⊔

A witness ∆2 in T2 ensures the existence of a “smaller” witness in T1.

Theorem 4. Let G = (N , Σ,R, S) be a CFG, M1 and M2 be PDAs, ι1 and ι2
be their initial types and f : (M1, ι1) → (M2, ι2) be a homomorphism. Assume

that ∆2 ⊢⇑
M2

(R, S) : ι2. If ∆1 ⊢⇑
M1

(R, S) : ι1, then there exists ∆′
1 such that

∆′
1 ⊢⇑

M1
(R, S) : ι1 and f(∆′

1) ⊑ ∆2.

Proof. Here, we give a proof sketch. Since ∆1 ⊢⇑
M1

(R, S) : ι1, there is the min-

imum witness type environment by Lemma 1. Let ∆0
1 be the minimum witness

of ⊢M1 (R, S) : ι1. Note that f(∆0
1) ⊑ ∆⇑

2 by Theorem 3.
We shorten the types in ∆0

1, appropriately. We define (q, A1A2 . . . Am) ⇓ n =
(q, An+1 . . . Am) if m > n (and undefined otherwise). This operation is extended

to types by (
∧
Θ → c) ⇓ n =

∧
{d ⇓ n | d ∈ Θ} → (c ⇓ n). Let (F, τ01 , τ2, Ã2)

be a quadruple such that F : τ01 ∈ ∆0
1, F : τ2 ∈ ∆2 and f(τ01) ⊑ (τ2 ⇑ Ã2). The

corresponding type binding F : τ ′1 of the quadruple is defined by τ ′1 = τ01 ⇓ n,

where n is the length of Ã2. Let ∆
′
1 be the set of all such bindings F : τ ′1. Then

∆′
1 satisfies the above conditions: See Appendix B for a more detailed proof. ⊓⊔

4.2 Procedure and Sufficient Condition for Termination

Recall the overall picture of our method to understand the role of the procedure
developed here. The final goal is to decide whether G is typable in T1. To solve the
problem, we first check whether G is typable in T2, and if so, use the derivation for
T2 and Theorem 4 to check whether G is typable in T1. The procedure developed
here takes care of this last step.

Refine(G, (M1, ι1), (M2, ι2), f,∆2).

1. Let n := 0 and ∆0
1 := {F : τ1 | ∃τ2. F : τ2 ∈ ∆2 and f(τ1) ⊑ τ2}.

2. Compute a fixed-point ∆1 of H starting from ∆0
1 as follows:

(a) Let ∆n+1
1 := H(∆n

1).
(b) If ∆n

1 = ∆n+1
1 , then ∆n

1 is a fixed-point of H.
(c) Otherwise, let n := n+ 1 and goto (a).

3. Check whether S :ι1 ∈ ∆1. If so, return ∆1. Otherwise, return untypable.

Fig. 1. The procedure to refine a witness

Before describing the procedure, we define the notion of finiteness. We say
that any base type q is finite and a type

∧
Θ → c is finite if Θ is a finite set.

A type environment ∆ is finite if ∆ is a finite set and for every type binding
x : τ ∈ ∆, τ is finite.

Figure 1 shows the procedure that refines a finite witness in T2 to one in T1.
Here for a given grammar G and its rewriting relation R, the function H on type
environments in T1 is defined by

H(∆1) = {F :
∧

Θ → c ∈ ∆1 | ∀(F x → t) ∈ R. ∆1, x :
∧

Θ ⊢⇑
M1

t : c}.

The procedure takes five arguments: a grammar G, two PDAs with the initial
types (M1, ι1) and (M2, ι2), a homomorphism f : (M1, ι1) → (M2, ι2) and a finite

type environment∆2 in T2 such that∆2 ⊢⇑
M2

(R, S):ι2. The finiteness of the type
environment ensures the termination of the procedure. The procedure returns a
witness if it exists, and otherwise returns untypable.

Example 6. Let G0 be the CFG defined in Example 1, A1 and A2 be PDAs
defined in Example 2, ∆′ be the finite witness of ⊢A2 (R, S) : ιA2 defined in
Example 4, f : A1 → A2 be the homomorphism defined in Example 5 and
ιA1 = (q1,⊥) ∧ (q2,⊥) → (q1,⊥). We compute a witness of ⊢A1 (R, S) : ιA1 by
our procedure Refine.

The starting point ∆0
1 for computing a fixed-point of H is the set of all

refinements of type bindings in ∆′. For example, ∆0
1(S) is given by

∧
∅ → (q1,a),

∧
∅ → (q1,b),

∧
∅ → (q1,⊥)∧

∅ → (q2,a),
∧
∅ → (q2,b),

∧
∅ → (q2,⊥)

(q1,a) → (q1,a), (q1,a) → (q1,b), (q1,a) → (q1,⊥)
(q1,a) → (q2,a), (q1,a) → (q2,b), (q1,a) → (q2,⊥)
(q1,b) → (q1,a), (q1,b) → (q1,b), (q1,b) → (q1,⊥)

...
(q1,a) ∧ (q1,b) → (q1,a), · · ·
(q1,a) ∧ (q1,b) ∧ (q2,a) → (q1,b), · · ·


since ∆′(S) = {(q, ⋆) → (q, ⋆)}. The type τ = (q1,a) → (q2,ab) does not belong
to ∆0

1(S), since f(τ) = (q, ⋆) → (q, ⋆⋆) ̸⊑ (q, ⋆) → (q, ⋆). The set ∆0
1(S) contains

26 × 6 elements, because there are 6 refinements of (q, ⋆). Similarly, ∆0
1(Fa)

contains 26 × 18 elements and ∆0
1(Fb) contains 2

18 × 6 elements.

Then we filter out wrong type bindings such as S :
∧
∅ → (q1,b) ∈ ∆0

1

by iteratively applying H. For example, S :
∧
∅ → (q1,b) /∈ H(∆0

1) because
S x → x ∈ R and ∆0

1, x :
∧

∅ ⊬A1 x : (q1,b).

Be repeated applications of H, we obtain the following fixed-point:

∆1 =


S :

∧({
(q1, B), (q2, B)

}
∪Θ1

)
→ (q1, B) B ∈ {a,b,⊥}

Fa :
∧({

(q2, B)
}

∪Θ1

)
→ (q1, Ba) f(Θ1) ⊆ {(q, ⋆)}

Fb :
∧({

(q1, Bb), (q2, Bb)
}
∪Θ2

)
→ (q1, B) f(Θ2) ⊆ {(q, ⋆⋆)}

 .

∆1 is an invariant of R and contains S : ιA1 . So ∆1 is a witness and returned by
Refine. ⊓⊔

We show the correctness and termination of Refine.

Lemma 4. Let M1 be a PDA. Given a finite environment ∆1, a term t and a
finite type τ , whether ∆1 ⊢⇑

M1
t : τ is decidable.

Proof. Induction on the structure of t. ⊓⊔

Lemma 5. Let (M1, ι1) and (M2, ι2) be PDAs with the initial symbols, f :
(M1, ι1) → (M2, ι2) be a homomorphism and ∆2 be a finite type environment in
T2. Then the type environment ∆0

1 defined in Fig. 1 is finite.

Proof. We first show that the following two propositions hold for any finite type
τ2 by induction on τ2: (i) for any type τ1 in T1, f(τ1) ⊑ τ2 implies finiteness of
τ1 and (ii) the set {τ1 | f(τ1) ⊑ τ2} is a finite set. Since there are finitely many
type bindings in ∆2, propositions (i) and (ii) imply finiteness of ∆0

1. ⊓⊔

Theorem 5. Let G = (N , Σ,R, S) be a CFG, (M1, ι1) and (M2, ι2) be PDAs
with the initial types, f : (M1, ι1) → (M2, ι2) be a homomorphism and ∆2 be a

finite witness of ⊢⇑
M2

(R, S) : ι2. Then Refine(G, (M1, ι2), (M2, ι2), f,∆2) always

terminates, and returns a witness of ⊢⇑
M1

(R, S) : ι1 if and only if it exists.

Proof. First, we show the termination of the step 2 in Figure 1. It is easy to
show that ∆n

1 is a finite type environment by induction on n (for the base case,
we use Lemma 5). Thus Lemma 4 implies that we can compute H(∆n

1). Since H
is decreasing with respect to the set inclusion ordering, i.e., H(∆1) ⊆ ∆1 for any
environment ∆1, and ∆0

1 is a finite set, the fixed-point iteration must terminate.
So the procedure Refine terminates.

Let ∆′
1 be a witness of ⊢⇑

M1
(R, S):ι1. Theorem 4 ensures that we can assume

without loss of generality that f(∆′
1) ⊑ ∆2. Thus ∆′

1 ⊆ ∆0
1 because ∆0

1 is the
set of all refinement type bindings. By induction on n, we have ∆′

1 = Hn(∆′
1) ⊆

Hn(∆0
1) = ∆n

1 , since ∆
′
1 is a fixed-point of H and H is monotonic. So S : ι1 ∈ ∆n

1

for any n, especially S : ι1 ∈ ∆1. ⊓⊔

5 Applications: Some Decidability Results

5.1 Balanced Parenthesis and Regular Hedge Languages

Let Σ be an alphabet. We define a PDA B = ({q}, Σ́ ∪ Σ̀,Σ ∪ {⊥}, δ), where
δ = {(q, A, á, q, Aa) | A ∈ Σ ∪ {⊥}, a ∈ Σ} ∪ {(q, a, à, q, ε) | a ∈ Σ} with the
initial type ιB = (q,⊥) → (q,⊥). Then LB(ιB) is the set of all balanced tags. For

example, áb́1b̀1b́2b̀2à ∈ LB(ιB) and b́1b̀2 /∈ LB(ιB), where a, b1, b2 ∈ Σ. It is known
that, for a given CFG G, whether LG ⊆ LB is decidable. Moreover, if LG ⊆ LB,
we can construct a finite type environment ∆ such that ∆ ⊢⇑

B (R, S) : ιB.
Assume that (M, ι) is a refinement of (B, ιB), i.e., there is f : (M, ι) → (B, ιB).

Then we can decide LG ⊆ LM in the following way. First, we decide whether
LG ⊆ LB. If not, then LG ⊈ LM by Lemma 3. If LG ⊆ LB, we construct a finite
witness ∆ and call Refine(G, (M, ι), (B, ιB), f,∆).

This argument leads to the following decidability result.

Theorem 6. Let G be a CFG and M be a refinement of B. Then LG ⊆ LM (ι)
is decidable. ⊓⊔

We have the following theorem for the class of refinements of B.

Theorem 7. A language is accepted by a refinement of B if and only if it is a
regular hedge language [14].

Proof. It is easy to prove using an algebraic representation of a regular hedge
language, called binoid [12, 18]. ⊓⊔

The above argument therefore gives a new definition of the class of regular
hedge languages and a new decidability proof of the inclusion problem between
CFLs and regular hedge languages.

5.2 Counting Automata and Superdeterministic Languages

We define the class of PDAs named C-machines.

Definition 4. A PDA (M, ιM) with the initial type is called a C-machine if its
stack alphabet is singleton and ιM is finite. ⊓⊔

A configuration of a C-machine is expressed by a pair (q, n) of a state q and
a natural number n representing the length of the stack sequence. We define the
stack extension ⇑ m for C-machines by (q, n) ⇑ m = (q, n+m) and (

∧
Θ → c) ⇑

m =
∧
{d ⇑ m | d ∈ Θ} → (c ⇑ m).

Theorem 8. For a given CFG G and C-machine (M, ιM), whether LG ⊆ LM (ιM)
is decidable. Moreover, when LG ⊆ LM (ιM), we can construct a finite type en-

vironment ∆ such that ∆ ⊢⇑
M (R, S) : ιM .

Proof. We give a proof sketch: See Appendix C for more details. For simplicity,
we assume that ιM = cE → cS . Let cE = (qE , nE) and cS = (qS , nS). Let N
be a finite-state automaton obtained by removing the counter of M , i.e., q ⊨a

N p
if and only if (q, n) ⊨a

M (p,m) for some n and m. Roughly speaking, N is an
“approximation” of M . So we can “refine” a witness in TN to a witness in TM .
Since N is finite-state, we can decide whether LG ⊆ LN (qE → qS). If not, then
LG ⊈ LM (ιM). Assume LG ⊆ LN (qE → qS) and let ∆N be the minimum witness
of ⊢N (R, S) : qE → qS (here TN is the type system whose base types are states
of N , instead of configurations).

For a given type binding F :
∧
{q1, . . . , qm} → q ∈ ∆N , we construct a

corresponding type binding in TM . Since ∆N is minimum, from the construction
of the minimum witness (see the proof of Lemma 1), we have w ∈ pre(F)(=
{v | ∃u. S$ ⇒∗ vFu$}) and wi ∈ LG(F) (1 ≤ i ≤ m) such that qS ⊨w

N q and
q ⊨wi

N qi for all i (a different choice of w and wi gives a different upper-bound
of witnesses). We define n and ni by (qE , nE) ⊨w

M (q, n) and (q, n) ⊨wi

M (qi, ni).
Then the corresponding type binding is F :

∧
{(q1, n1), . . . , (qm, nm)} → (q, n).

Let ∆′
M be the type environment collecting such type bindings. We define

∆M = {F :τ | ∃σ, k. F :σ ∈ ∆′
M and τ ⇑ k = σ}. Then ∆M gives an upper-bound

in the sense that if a witness of ⊢⇑
M (R, S) : ιM exists, then a witness included

by ∆M exists. ⊓⊔

Similarly to the argument in the previous subsection, Theorem 8 leads to the
following decidability result.

Theorem 9. For a given context-free grammar G and a pushdown automaton
M which is a refinement of a C-machine N , whether LG ⊆ LM is decidable. ⊓⊔

The class of refinements of C-machines is closely related to the class of su-
perdeterministic pushdown automata proposed by Greibach and Friedman [5].

Definition 5 (Superdeterministic PDAs [5]). A pushdown automaton M is
of delay d if for any series of one-step transitions by ε, its length is less than or
equal to d, i.e., if c0 ⊩ε

M c1 ⊩ε
M · · · ⊩ε

M cn then n ≤ d. A pushdown automaton
M(ι) is superdeterministic if it satisfies the following properties: (1) M is of

delay d for some finite number d, (2) if (q, Ã1) ⊨w
M (p1, B̃1) and (q, Ã2) ⊨w

M

(p2, B̃2), then p1 = p2 and |B̃1| − |Ã1| = |B̃2| − |Ã2|, here |Ã| is the length of
A, and (3) ι is finite. A language L is superdeterministic if L = LM for some
superdeterministic pushdown automaton M . ⊓⊔

The class of refinements of C-machines and of superdeterministic PDAs are
incomparable as classes of PDAs. However, they are equally expressive in the
sense that the class of languages accepted by refinements of C-machines is equiv-
alent to the one accepted by superdeterministic PDAs.

Theorem 10. A language is superdeterministic if and only if it is accepted by
a refinement of a C-machine.

Proof. We give a proof sketch. We first prove the right-to-left direction. A state
q of C-machine C has a ε-loop if there is a sequence of ε-transitions starting

from and ending with q, i.e., (q, n) ⊩ε
C · · · ⊩ε

C (q,m) for some n and m. By
removing states which have ε-loops, we can construct an equivalent C-machine
that is of finite delay. Similarly, we can assume without loss of generality that any
refinement of a C-machine is of finite delay. Consider condition (2) in Definition 5.
The condition on the stack length must be satisfied by all refinements of C-
machines, but the condition on the state may not in general. However we can
always construct another refinement that satisfies the condition by moving the
refined state information to the stack top, i.e., instead of refining a configuration
of the C machine (q, n) to (q′, A1 . . . An), refining it to (q, ⟨A1, q1⟩ . . . ⟨An, q

′⟩).
So for all refinements of C-machines, we can construct another refinement which
is superdeterministic and accepts the same language.

For the other direction, letM be a superdeterministic PDA and d be its delay.
Note that for any configuration (q, B̃Ad+1 . . . A1), only d + 1 stack symbols at

the top (i.e., Ad+1 . . . A1) affect a transition (q, B̃Ã) ⊨a
M (q′, B̃C̃). So we can

construct another superdeterministic PDA M ′, whose transition coincides with
the transition of M and is normalized as follows:

(q, B̃Ã) ⊩a
M ′ (⟨q, a⟩, B̃Ã)

⊩ε
M ′ (⟨q, a, A1⟩, B̃Ad+1 . . . A2)

...

⊩ε
M ′ (⟨q, a, Ã⟩, B̃)

⊩ε
M ′ (q′, B̃C̃).

In the first stage of the transition, M ′ records a on its state, pops its stack
d times and records them on the state. Then the state is a triple of the form
⟨q, a, Ã⟩. In the last stage, M ′ computes q′ and C̃ from its state ⟨q, a, Ã⟩. See
Appendix D for more details about the construction of M ′.

Let ♮(·) be a mapping which forgets stack symbols such as

♮((⟨q, a, An . . . A1⟩, Bm . . . B1)) = (⟨q, a, n⟩,m).

The mapping ♮(·) and the transition relation δ of M induces a transition rela-
tion ♮(δ) of some C-machine, which is an approximation of M . Condition (2) in
Definition 5 ensures that ♮(δ) is deterministic. ⊓⊔

The decidability of the inclusion problem between context-free languages and
superdeterministic languages has been proved by Greibach and Friedman [5].
The proof of Theorem 9 with Theorem 10 is an alternative and arguably simpler
proof of the result.

6 Related Work

There have been a number of studies on the inclusion problems for subclasses of
context-free languages (see [3] for a survey).

One of the strongest decidability results is about the inclusion between
context-free languages and superdeterministic languages, proved by Greibach
and Friedman [5]. Nguyen and Ogawa [15] gave a new proof by simplifying the
technique used in [5]. Greibach and Friedman [5] reduced the problem to the
emptiness problem for a pushdown automaton and Nguyen and Ogawa [15] gave
simpler construction of a pushdown automaton.

Minamide and Tozawa [12] have proposed an algorithm for inclusion between
context-free languages and regular hedge languages, motivated by the validation
of dynamically generated HTML documents. As demonstrated in Section 5.1, our
method gives an alternative algorithm for the same problem, although our algo-
rithm may not be as efficient as Minamide and Tozawa’s. Møller and Schwarz [13]
have developed an algorithm to validate a context-free grammar against SGML
DTDs, dealing with tag omissions and exceptions. It is not clear whether our
method can provide a similar result.

The subclass of the context-free languages named visibly pushdown lan-
guages [1, 2] has many good properties such as boolean closure and decidability
of the emptiness problem in polynomial time. Some researchers have extended
the class preserving such properties. Caucal [4] has introduced a notion of syn-
chronized pushdown automata and Nowotka and Srba [16] have proposed height-
deterministic pushdown automata. The refinement of a counter machine is similar
to those notions. Since the class of visibly pushdown automata can be defined as
the class of refinements of a certain automaton, our notion of refinements may
give an extension of them.

Recently, type-based approaches to model-checking, verification and language
inclusion problems have been extensively studied [7–9, 11, 19, 20]. Kobayashi and
Ong [7, 9] have proposed a type system for recursion schemes that is equivalent to
the modal µ-calculus model-checking of recursion schemes (the decidability of the
model-checking problem has been proved by Ong [17]). These type systems have
been applied to verification of higher-order programs [7, 11, 10], and practically
effective typability checkers have been developed [6, 8]. The present work extends
type systems to deal with infinite state systems, namely deterministic pushdown
automata. Types are now configurations of pushdown automata, rather than
states of automata, which are finite a priori.

In our previous work [20], we gave a type-based proof for the inclusion prob-
lem between context-free languages and superdeterministic languages. But the
proof is specific to superdeterministic languages, and difficult to generalize.

7 Conclusion and Future Work

We have proposed an intersection type system characterizing the inclusion by a
deterministic context-free language, and given a sufficient condition of decidabil-
ity of its typability. Future work includes extensions in two directions, extending
grammars and automata. A naive extension to higher-order recursion schemes
fails to establish the counterpart of Theorem 4. That is because the up-to tech-
nique used in this paper is too crude to deal with them. To extend automata is

easier than grammars. For example, we can develop a framework for higher-order
pushdown automata. So what we should do is to find a language accepted by a
higher-order pushdown automaton which has decidable inclusion problem and a
practical use.

Acknowledgement. The authors would like to thank the anonymous review-
ers for their valuable comments. This work is partially supported by Kakenhi
23220001 and 22·3842.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) STOC.
pp. 202–211. ACM (2004)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

3. Asveld, P.R.J., Nijholt, A.: The inclusion problem for some subclasses of context-
free languages. Theor. Comput. Sci. 230(1-2), 247–256 (2000)

4. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z.
(eds.) Developments in Language Theory. Lecture Notes in Computer Science, vol.
4036, pp. 120–132. Springer (2006)

5. Greibach, S.A., Friedman, E.P.: Superdeterministic PDAs: A subcase with a de-
cidable inclusion problem. J. ACM 27(4), 675–700 (1980)

6. Kobayashi, N.: Model-checking higher-order functions. In: Porto, A., López-
Fraguas, F.J. (eds.) PPDP. pp. 25–36. ACM (2009)

7. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Shao, Z., Pierce, B.C. (eds.) POPL. pp. 416–428. ACM (2009)

8. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In: FoSSaCS. pp. 260–274. Springer (2011)

9. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: LICS. pp. 179–188. IEEE
Computer Society (2009)

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) PLDI. pp. 222–233. ACM
(2011)

11. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Hermenegildo, M.V.,
Palsberg, J. (eds.) POPL. pp. 495–508. ACM (2010)

12. Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:
Kobayashi, N. (ed.) APLAS. Lecture Notes in Computer Science, vol. 4279, pp.
357–373. Springer (2006)

13. Møller, A., Schwarz, M.: HTML validation of context-free languages. In: FoSSaCS,
pp. 426–440. Springer (2011)

14. Murata, M.: Hedge automata: a formal model for XML schemata (1999), http:
//www.xml.gr.jp/relax/hedge_nice.html

15. Nguyen, V.T., Ogawa, M.: Alternate stacking technique revisited: Inclusion prob-
lem of superdeterministic pushdown automata. IPSJ Transactions on Programming
1(1), 36–46 (2008)

16. Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kucera, L.,
Kucera, A. (eds.) MFCS. Lecture Notes in Computer Science, vol. 4708, pp. 125–
134. Springer (2007)

17. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS. pp. 81–90. IEEE Computer Society (2006)

18. Pair, C., Quéré, A.: Définition et etude des bilangages réguliers. Information and
Control 13(6), 565–593 (1968)

19. Tsukada, T., Kobayashi, N.: Untyped recursion schemes and infinite intersection
types. In: Ong, C.H.L. (ed.) FOSSACS. Lecture Notes in Computer Science, vol.
6014, pp. 343–357. Springer (2010)

20. Tsukada, T., Kobayashi, N.: A type-theoretic proof of the decidability of the
language containment between context-free languages and superdeterministic lan-
guages (in japanese). IPSJ Transactions on Programming 4(2), 31–47 (2011)

21. Uezato, Y., Minamide, Y.: Monoid-based approach to the inclusion problem on
superdeterministic pushdown automata. In: DLT. Lecture Notes in Computer Sci-
ence, vol. 9840, pp. 393–405. Springer (2016)

A Detailed Proof of Lemma 1

Let G = (N , Σ,R, S) be a CFG, M be a PDA and ι =
∧
Θ → c be its initial

type. Assume that LG ⊆ LM (ι).
For a sequence α1 . . . αn of non-terminals and terminals, we define

LG(α1 . . . αn) = {w | α1(α2(. . . (αn($)) . . .)) ⇒∗
R w$}

pre(α1 . . . αn) = {w | S$ ⇒∗
R w(α1(α2(. . . (αn(v($))) . . .)))}.

We can assume without loss of generality that for every sequence α1 . . . αn,
LG(α1 . . . αn) ̸= ∅ and pre(α1 . . . αn) ̸= ∅. Let

∆0 = {F :
∧

Ξ → d | ∃w ∈ pre(F). c ⊨w
M d and Ξ = {d′ | ∃u ∈ LG(F).d ⊨u

M d′}}.

Lemma 6. Let F be a non-terminal and F : τ ∈ ∆0. Then LG(F) ⊆ LM (τ).

Proof. Let τ =
∧
Ξ → d. Assume w ∈ LG(F). By the definition of ∆0, we have

u and v such that S$ ⇒∗
R u(F (v($))) and c ⊨u

M d. Since u(w(v($))) ∈ LG ⊆
LM (ι) = LM (

∧
Θ → c), we have c ⊨u

M d ⊨w
M d′ ⊨v

M c′ for some d′ and c′. By the
definition of ∆0, we have d′ ∈ Ξ. So w ∈ LM (

∧
Ξ → d) as required. ⊓⊔

Lemma 7. Let α1 . . . αn be a sequence of non-terminals and terminals, and∧
Ξ → d be a type. If LG(α1 . . . αn) ⊆ LM (

∧
Ξ → d) and there exists w ∈

pre(α1 . . . αn) such that c ⊨w
M d, then ∆0, x :

∧
Ξ ⊢M α1(α2(. . . (αn(x)) . . .)) : d.

Proof. By induction on the length n of the sequence. The base case n = 0 is
trivial. We prove the induction step. We assume that α1 = F ∈ N . The case
α1 = a ∈ Σ can be proved by the same way.

Let w be a normal word such that w ∈ pre(Fα2 . . . αn) and c ⊨w
M d. By the

definition of ∆0, we have (F :
∧
Ξ ′ → d) ∈ ∆0 for some Ξ ′. Let d′ ∈ Ξ ′. We

should show that ∆0, x :
∧

Ξ ⊢M α2(. . . (αn(x)) . . .) : d
′. Because F :

∧
Ξ ′ →

d ∈ ∆0 and d′ ∈ Ξ ′, by the definition of ∆0, we have u ∈ LG(F) such that
d ⊨u

M d′. We have LG(α2 . . . αn) ⊆ LM (
∧
Ξ → d′) because LG(wα2 . . . αn) ⊆

LM (
∧

Ξ → d) and d ⊨w
M d′. Therefore, wu ∈ pre(α2 . . . αn), c ⊨wu

M d′ and
LG(α2 . . . αn) ⊆ LM (

∧
Ξ → d′). So by the induction hypothesis, we have ∆0, x :∧

Ξ ⊢M α2(. . . (αn(x)) . . .) : d
′. ⊓⊔

Lemma 8. ∆0 ⊢M (R, S) : ι.

Proof. It is easy to show that ∆0, $:
∧
Θ ⊢M S$: c from LG(S) ⊆ LM (ι) and

the definition of ∆0. We show ∆0 ⊢M R.
Let F :

∧
Ξ → d ∈ ∆0 and F x → α1(α2(. . . (αn(x)) . . .)) ∈ R. By the defini-

tion of ∆0, there is w such that w ∈ pre(F) and c ⊨w
M d. Then w ∈ pre(α1 . . . αn)

because pre(F) ⊆ pre(α1 . . . αn). We have LG(α1 . . . αn) ⊆ LM (
∧
Ξ → d) by

LG(α1 . . . αn) ⊆ LG(F) and Lemma 6. So by Lemma 7, we have ∆0, x :
∧
Ξ ⊢M

α1(α2(. . . (αn(x)) . . .)) : d. ⊓⊔

Lemma 9. For all ∆ such that ∆ ⊢M (R, S) : ι, we have ∆0 ⊑ ∆.

Proof. Let F :
∧
Ξ0 → c0 ∈ ∆0.

First, we show that F :
∧
Ξ → c0 ∈ ∆ for some Ξ. By the definition of ∆0, we

have S$ ⇒∗
R w(F (v($))) and c ⊨w

M c0 for some w and v. Since ∆, $:
∧
Θ ⊢M S$:c

and the typing is preserved by reductions, we have ∆, $:
∧
Θ ⊢M w(F (v($))) :

c. By induction on the length of w, we have ∆, $:
∧
Θ ⊢M Fv$: c0, using

determinism of M . Thus F :
∧
Ξ → c0 ∈ ∆ for some Ξ.

Second, we show that Ξ0 ⊆ Ξ. Let d0 ∈ Ξ0. By the definition of ∆0, we have
w ∈ LG(F) such that c0 ⊨w

M d0. Since F :
∧
Ξ → c0 ∈ ∆, we have ∆, $:

∧
Ξ ⊢M

F$:c0. Thus ∆, $:
∧
Ξ ⊢M w$:c0 because w ∈ LG(F) and the typing is preserved

by reductions. Since c0 ⊨w
M d0, we have ∆, $:

∧
Ξ ⊢M $: d0. Therefore d0 ∈ Ξ

as required. ⊓⊔

Theorem 1 is a consequence of Lemma 8 and Lemma 9.

B Detailed Proof of Theorem 4

Claim

Let G = (N , Σ,R, S) be a CFG, M1 and M2 be PDAs, ι1 and ι2 be their initial

types and f : (M1, ι1) → (M2, ι2) be a homomorphism. Assume that ∆2 ⊢⇑
M2

(R, S) :ι2. If ∆1 ⊢⇑
M1

(R, S) :ι1, then there exists ∆′
1 such that ∆′

1 ⊢⇑
M1

(R, S) :ι1
and f(∆′

1) ⊑ ∆2.

Proof

Since ∆1 ⊢⇑
M1

(R, S) : ι1, there is the minimum witness type environment by

Lemma 1. Let ∆0
1 be the minimum witness of ⊢M1 (R, S) : ι1. Note that f(∆0

1) ⊑
∆⇑

2 by Theorem 3.
We define (q,A1A2 . . . Am) ⇓ n = (q,An+1 . . . Am) if m > n (and undefined

otherwise). This operation is extended to types by (
∧
Θ → c) ⇓ n =

∧
{d ⇓

n | d ∈ Θ} → (c ⇓ n).

Let (F, τ01 , τ2, Ã2) be a quadruple such that F : τ01 ∈ ∆0
1, F : τ2 ∈ ∆2 and

f(τ01) ⊑ (τ2 ⇑ Ã2). The corresponding type binding F : τ ′1 of the quadruple is

defined by τ ′1 = τ01 ⇓ n, where n is the length of Ã2. Let ∆′
1 be the set of all

such bindings F : τ ′1.
We show that ∆′

1 satisfies the requirements of the above claim. It is trivial

that f(∆′
1) ⊑ ∆2 by the construction. We prove ∆′

1 ⊢⇑
M1

(R, S) : ι1.

Lemma 10. Let c01 and c2 be configurations of M1 and M2, respectively. Assume

1. f(c01) ⊑ (c2 ⇑ Ã2),
2. F :

∧
Θ0

1 → c01 ∈ ∆0
1 and

3. F :
∧
Θ2 → c2 ∈ ∆2.

Then f(
∧
Θ0

1 → c01) ⊑ ((
∧
Θ2 → c2) ⇑ Ã2).

Proof. It is enough to show that for every d01 ∈ Θ0
1, there is d2 ∈ Θ2 such that

f(d01) = (d2 ⇑ Ã2).
Let d01 ∈ Θ0

1. Since ∆0
1 is minimum, by the construction of the minimum

witness (Lemma 1), we have w ∈ LG(F) such that c01 ⊨w
M1

d01. Since ∆2 ⊢⇑
M2

(R, F):
∧
Θ2 → c2, by soundness (Theorem 1 with Theorem 2), we have LG(F) ⊆

LM2(
∧

Θ2 → c2). Therefore we have c2 ⊨w
M2

d2 for some d2 ∈ Θ2.

We show that f(d01) = (d2 ⇑ Ã2). We define d′2 by (c2 ⇑ Ã2) ⊨w
M2

d′2. Let n

be the length of Ã2 and assume

c01 = (q1, A
1
1 . . . A

m
1)

c2 ⇑ Ã2 = (q2, A
1
2 . . . A

m
2).

Therefore Ã2 = A1
2 . . . A

n
2 and c = (q2, A

n+1
2 . . . Am

2). Then we have the following
transitions:

c01 = (q1, A
1
1 . . . A

m
1) ⊨w

M1
(q′1, B

1
1 . . . B

m′

1) = d01

(c2 ⇑ Ã2) = (q2, A
1
2 . . . A

m
2) ⊨w

M2
(q′2, B

1
2 . . . B

m′

2) = d′2

c2 = (q2, A
n+1
2 . . . Am

2) ⊨w
M2

(q′2, B
n+1
2 . . . Bm′

2) = d2.

Because f is a homomorphism between M1 and M2, we have f(Ai
1) = Ai

2 for
every 1 ≤ i ≤ m and f(Bi

1) = Bi
2 for every 1 ≤ i ≤ m′.

We claim that Ai
1 = Bi

1 for every 1 ≤ i ≤ n. Assume it is not the case. Then
An

1 is popped during the transition c01 ⊨w
M1

d01, i.e., for some prefix ua of w,

(q1, A
1
1 . . . A

m
1) ⊨u

M1
⊩a

M1
⊩ε

M1
⊩ε

M1
· · · ⊩ε

M1
(p,A1

1 . . . A
n
1),

where we abbreviate c ⊨a
M1

c′ ⊨b
M1

c′′ for some c′ to c ⊨a
M1

⊨b
M2

c′′. Then we have

(q1, A
1
1 . . . A

m
1) ⊨u

M1
⊩a

M1
⊩ε

M1
⊩ε

M1
· · · ⊩ε

M1
(p1, A

1
1 . . . A

n
1)

(q2, A
1
2 . . . A

m
2) ⊨u

M2
⊩a

M2
⊩ε

M2
⊩ε

M2
· · · ⊩ε

M2
(p2, A

1
2 . . . A

n
2)

(q2, A
n+1
2 . . . Am

2) ⊨u
M2

⊩a
M2

⊩ε
M2

⊩ε
M2

· · · ⊩ε
M2

(p2, ε),

where ε denotes the empty sequence. So the transition starting from (q2, A
n+1
2 . . . Am

2)
get stuck. It contradict to the assumption. Thus Ai

1 = Bi
1 for every 1 ≤ i ≤ n.

Then we have Ai
2 = Bi

2 for every 1 ≤ i ≤ n, because Ai
2 = f(Ai

1) = f(Bi
1) =

Bi
2. Therefore f(d01) = d′2 = (d2 ⇑ Ã2), as required. ⊓⊔

Lemma 11. Let αi ∈ N ∪Σ. Assume

1. f(
∧
Θ0

1 → c01) ⊑ ((
∧
Θ2 → c2) ⇑ Ã2),

2. ∆0
1, x :

∧
Θ0

1 ⊢M1 α1(α2(. . . (αn(x)) . . .)) : c
0
1 and

3. ∆⇑
2 , x :

∧
Θ2 ⊢M2 α1(α2(. . . (αn(x)) . . .)) : c2.

Let
∧
Θ′

1 → c′1 = ((
∧
Θ0

1 → c01) ⇓ m), where m is the length of Ã2. Then
(∆′

1)
⇑, x :

∧
Θ′

1 ⊢M1 α1(α2(. . . (αn(x)) . . .)) : c
′
1.

Proof. By induction on n. The base case n = 0 is trivial. We assume that n > 0.
There are two cases. The case α1 ∈ Σ is easy. Assume α1 = F ∈ N . Let
t = α2(. . . (αn(x)) . . .). Then we have the following derivations: the derivation
in T1
∆0

1, x :
∧
Θ0

1 ⊢M1 F :
∧
Ξ0

1 → c01 ∆0
1, x :

∧
Θ0

1 ⊢M1 t : d01 (for all d01 ∈ Ξ0
1)

∆0
1, x :

∧
Θ0

1 ⊢M1 F (t) : c01
,

and the derivation in T2
∆⇑

2 , x :
∧
Θ2 ⊢M2 F :

∧
Ξ2 → c2 ∆⇑

2 , x :
∧
Θ2 ⊢M2 t : d2 (for all d2 ∈ Ξ2)

∆⇑
2 , x :

∧
Θ2 ⊢M2 F (t) : c2

.

So F :
∧
Ξ0

1 → c01 ∈ ∆0
1 and F :

∧
Ξ2 → c2 ∈ ∆⇑

2 . By the definition of ∆⇑, there

are B̃ and F :
∧
Ξ ′

2 → c′2 ∈ ∆2 such that
∧
Ξ2 → c2 = (

∧
Ξ ′

2 → c′2) ⇑ B̃. Then,
by Lemma 10, we have

f(
∧

Ξ0
1 → c01) ⊑ ((

∧
Ξ ′

2 → c′2) ⇑ (Ã2B̃2)) = ((
∧

Ξ2 → c2) ⇑ Ã2).

Especially, for any d01 ∈ Ξ0
1 , we have d2 ∈ Ξ2 such that f(d01) = d2 ⇑ Ã2.

Therefore, for all d01 ∈ Ξ0
1 , there is d2 ∈ Ξ2 such that

f(
∧

Θ0
1 → d01) ⊑ ((

∧
Θ2 → d2) ⇑ Ã2).

So by the induction hypothesis, we have (∆′
1)

⇑, x :
∧
Θ2 ⊢M2 t : (d01 ⇓ n). The

rest of the proof is straightforward, using Lemma 10. ⊓⊔

Then ∆′
1 ⊢⇑

M1
(R, S) : ι1 is an easy consequence of ∆0

1 ⊢M1 (R, S) : ι1 and

∆2 ⊢⇑
M2

(R, S) : ι2 and Lemma 11.

C Detailed Proof of Theorem 8

We fix a C-machine C(ι) in this section. Let ι =
∧
F → (qS , nS) and L be the

maximal number in F , i.e., L = max{n | (q, n) ∈ F}. Since ι is finite, L is
well-defined.

The followings are the key properties of C-machines. They are easy to prove.

Lemma 12. For any word w, if (q, n1) ⊨w
C (q′1, n

′
1) and (q, n2) ⊨w

C (q′2, n
′
2), then

q′1 = q′2 and n′
1 − n1 = n′

2 − n2. ⊓⊔

Lemma 13. For any word w, if w ∈ LC(
∧
F → (q, n1)) and w ∈ LC(

∧
F →

(q, n2)), then |n1 − n2| ≤ L. ⊓⊔

Let G be a CFG. Assume that LG ⊆ LC(ι). Then there is the minimum
witness of ⊢C (R, S) : ι by Lemma 1. Let ∆0 be the minimum witness. We show
some properties of ∆0. Recall that ∆0 is defined by

∆0 = {F :
∧

Θ → c |Θ = {d | ∃w ∈ LG(F). c ⊨w
M d} and ∃w ∈ pre(F). (qS , nS) ⊨w

C c},

where pre(F) = {w | S$ ⇒∗
R wFv$}. In other words, if F :

∧
Θ → c ∈ ∆0, we

know that

1. c is reachable by pre(F) from the initial state, and
2. Θ is the set of all reachable configurations by LG(F) from c.

Lemma 14. Assume F :
∧
Θ1 → (q, n1) ∈ ∆0 and F :

∧
Θ2 → (q, n2) ∈ ∆0 and

n2 ≥ n1. Then (
∧
Θ1 → (q, n1)) ⇑ (n2 − n1) =

∧
Θ2 → (q, n2).

Proof. A consequence of the definition of ∆0 and Lemma 12. We should show
that (q′, n′

1) ∈ Θ1 implies (q′, n′
1 + (n2 − n1)) ∈ Θ2 and (q′, n′

2) ∈ Θ2 implies
(q′, n′

2 − (n2 −n1)) ∈ Θ1. Here we prove the latter. The former can be proved in
the same way.

Assume (q′, n′
2) ∈ Θ2. We show that (q′, n′

2 − (n2 − n1)) ∈ Θ1. By the
definition of ∆0, there is w ∈ LG(F) such that (q, n2) ⊨w

C (q′, n′
2). By soundness

(Theorem 1), ∆0 ⊢C (R, F):
∧

Θ1 → (q, n1) and w ∈ LG(F) implies that there is
some configuration d such that (q, n1) ⊨w

C d. By Lemma 12, we have d = (q′, n′
1),

where n′
1 −n1 = n′

2 −n2. Thus n
′
1 = n′

2 − (n2 −n1). By the definition of ∆0, we
have (q′, n′

1 − (n2 − n1)) ∈ Θ1 as required. ⊓⊔

A consequence of Lemma 14 is that for each F and q, there is a canonical
type binding F :

∧
Θ → (q, n) ∈ ∆0 in the sense that all other type bindings

of the form F :
∧
Θ′ → (q, n′) ∈ ∆0 are obtained by its extensions, i.e., there

is k such that (
∧
Θ → (q, n)) ⇑ k =

∧
Θ′ → (q, n′). Let ∆C be the set of all

canonical bindings defined by

∆C = {F :
∧

Θ1 → (q, n1) ∈ ∆0 | ∀(F :
∧

Θ2 → (q, n2)) ∈ ∆0. n1 ≤ n2}.

Clearly, ∆C ⊢⇑
C (R, S) : ι.

The next lemma restricts the shape of types in ∆0 (and thus types in ∆C).

Lemma 15. Assume F :
∧
Θ → (q, n) ∈ ∆0 and (p,m), (p,m′) ∈ Θ. Then

|m−m′| ≤ L.

Proof. A consequence of the definition of ∆0 and Lemma 13. By the definition
of ∆0, we have w,w′ ∈ LG(F) such that (q, n) ⊨w

C (p,m) and (q, n) ⊨w′

C (p,m′).
Moreover, by the definition of ∆0, we have v ∈ pre(F) such that (qS , nS) ⊨v

C

(q, n). By the definition of pre(F), we have u such that S$ ⇒∗
R vFu$. Since

LG ⊆ LC(
∧
F → (qS , nS)), we have vwu, vw′u ∈ LC(

∧
F → (qS , nS)). As a

result, we have two transition sequences

(qS , nS) ⊨v
C (q, n) ⊨w

C (p,m) ⊨u
C d

(qS , nS) ⊨v
C (q, n) ⊨w′

C (p,m′) ⊨u
C d′

where d, d′ ∈ F . Especially, u ∈ LC(
∧
F → (p,m)) and u ∈ LC(

∧
F → (p,m′)).

Thus, by Lemma 13, we have |m−m′| ≤ L. ⊓⊔

Now we construct ∆ containing ∆C .
LetN be a finite-state automaton obtained by removing the counter of C, i.e.,

the set of states of N is equivalent to C and p ⊨a
N q if and only if (p, n) ⊨a

C (q,m)
for some m and n. Let F ′ = {q | (q, n) ∈ F}.

We solve the typability problem of G in TN . Since N is a finite-state automa-
ton, the sets of types and type environments are finite. So we can decide whether
there is a witness of ⊢N (R, S) :

∧
F ′ → qS and construct the minimum witness

if it exists. Let ∆N be the minimum witness of ⊢N (R, S) :
∧

F ′ → qS .

For each F :
∧
Θ′ → q ∈ ∆N , we construct a type binding in TC . Since ∆N

is minimum, there are words which satisfy the following conditions:

1. v ∈ pre(F) such that qS ⊨v
N q.

2. wp for each p ∈ Θ′ such that q ⊨wp

N p.

We define configurations (q, n) and (p,mp) (for each p ∈ Θ′) of C by (qS , nS) ⊨v
C

(q, n) and (q, n) ⊨wp

C (p,mp) (if no such configurations exist, then LG ⊈ LC(ι)).
Let

τ =
∧

{(p,mp + k) | p ∈ Θ′ and − L ≤ k ≤ L and mp + k > 0} → (q, n).

The corresponding type binding in TC is F : τ . Let ∆1 be the set of all such
bindings.

Lemma 16. Let τ be the type constructed above. Then there is σ such that
F : σ ∈ ∆0 and σ ⊑ τ .

Proof. Since v ∈ pre(F), by the definition of ∆0, there is F :
∧
Θ → (q, n) ∈ ∆0.

Let (p,m′) ∈ Θ. We should show that m′ = mp + k for some −L ≤ k ≤ L.
By the definition of Θ′, we have p ∈ Θ′. By the definition of (p,mp), we have
(p,mp) ∈ Θ. From Lemma 15, we have |mp−m′| ≤ L. Thus −L ≤ mp−m′ ≤ L
as required. ⊓⊔

Then ∆1 is bigger than ∆C in the following sense.

Lemma 17. For any F :σ ∈ ∆C , there is k and F :τ ∈ ∆1 such that (σ ⇑ k) ⊑ τ .

Proof. Let σ =
∧
Θ → (p, n). By the construction of ∆C , we know that (p, n) is

reachable by pre(F) from (qS , nS) in C. Thus p is reachable by pre(F) from qS
in N . By the construction of ∆1, there is a type binding F :

∧
Θ′ → p ∈ ∆1. Let

τ =
∧
Θ′ → p.

By Lemma 16, there is a type binding F : τ ′ ∈ ∆0 such that τ ′ ⊑ τ . Since the
type σ is canonical, there is k such that σ ⇑ k = τ ′. Therefore (σ ⇑ k) ⊑ τ . ⊓⊔

We define ∆ as {F : σ | ∃k, τ. (σ ⇑ k) ⊑ τ and F : τ ∈ ∆1}.

Lemma 18. ∆C ⊆ ∆.

Proof. A direct consequence of Lemma 17. ⊓⊔

Since ∆ is finite, we can decide whether G is typable in TC . Moreover, if it is
typable, we can construct a finite witness.

D Details of the Construction in the Proof of Theorem 10

Let M = (Q,Σ, Γ, δ) be a superdeterministic PDA of delay d0 with the initial
type ι and d = d0 + 1. Here we construct the PDA M ′ = (Q′, Σ, Γ, δ′) in the
proof of Theorem 10 and show its properties. The transition of M is normalized
as follows:

(q, B̃Ad . . . A1) ⊩a
M ′ (⟨q, a⟩, B̃Ã)

⊩ε
M ′ (⟨q, a, A1⟩, B̃Ad . . . A2)

⊩ε
M ′ (⟨q, a, A2A1⟩, B̃Ad . . . A3)

...

⊩ε
M ′ (⟨q, a, Ad . . . A1⟩, B̃)

⊩ε
M ′ (q′, B̃C̃).

We assume that M has a special stack symbol ⊥ such that (q,⊥) ⊮a
M and

(q,⊥) ⊮ε
M , i.e., M gets stuck if it sees ⊥. For a stack symbol A, we write An for

n︷ ︸︸ ︷
A . . . A.

The set Q′ of states of M ′ is defined by

Q′ = {q | q ∈ Q}
∪ {⟨q, a⟩ | q ∈ Q, a ∈ Σ}
∪ {⟨q, a,Ai . . . A1⟩ | q ∈ Q, a ∈ Σ, i ≤ d,∀j ≤ i(Aj ∈ Γ)}

and the transition relation is given by δ′ = δ′1 ∪ δ′2 ∪ δ′3 ∪ δ′4, where

δ′1 = {(q,A1, a, ⟨q, a⟩, A1) | q ∈ Q,A1 ∈ Γ, a ∈ Σ}
δ′2 = {(⟨q, a⟩, A1, ε, ⟨q, a, A1⟩, ε) | q ∈ Q, a ∈ Σ,A1 ∈ Γ}
δ′3 = {(⟨q, a,Ai−1 . . . A1⟩, Ai, ε, ⟨q, a, Ai . . . A1⟩, ε)

| q ∈ Q, a ∈ Σ, i ≤ d,∀j ≤ i(Aj ∈ Γ)}
δ′4 = {(⟨q, a,Ad . . . A1⟩, B, ε, q′, BC̃)

| q ∈ Q, a ∈ Σ, ∀i ≤ d(Ai ∈ Γ), B ∈ Γ, (q, Ad . . . A1) ⊨a
M (q′, C̃)}.

The automaton M ′ records the letter on its state by δ′1, records stack symbols
by δ′2 and δ′3, and computes the next configuration from information recorded
on the state by δ′4. The definition of δ′4 uses the transition of M .

Lemma 19. Let q, q′ ∈ Q, a ∈ Σ and Ã, B̃ be sequences of stack symbols. Then
(q, Ã) ⊨a

M (q′, B̃) if and only if (q,⊥d Ã) ⊨a
M ′ (q′,⊥d B̃).

Proof. By the definition of δ′ and the fact that (q, Ã) ⊨a
M (q′, B̃) if and only if

(q,⊥Ã) ⊨a
M (q′,⊥B̃). To add ⊥d to the stack is needed for the case that the

length of Ã is less than or equal to d. ⊓⊔

Corollary 1. LM (ι) = LM ′(ι ⇑ ⊥d). ⊓⊔

Then we define a C-machine ♮(M ′) and show thatM ′ is a refinement of ♮(M ′).
Intuitively, ♮(M ′) is given by forgetting stack symbols of M . We write ⋆ for the
unique stack symbol of ♮(M ′). The states ♮(Q′) of ♮(M ′) is given by

♮(Q′) = {q | q ∈ Q}
∪ {⟨q, a⟩ | q ∈ Q, a ∈ Σ}
∪ {⟨q, a, i⟩ | q ∈ Q, a ∈ Σ, 1 ≤ i ≤ d}

and the transition relation ♮(δ′) is given by

♮(δ′) = {(q, ⋆, a, ⟨q, a⟩, ⋆) | q ∈ Q, a ∈ Σ}
∪ {(⟨q, a⟩, ⋆, ε, ⟨q, a, 1⟩, ε) | q ∈ Q, a ∈ Σ}
∪ {(⟨q, a, i− 1⟩, ⋆, ε, ⟨q, a, i⟩, ε) | q ∈ Q, a ∈ Σ, i ≤ d}
∪ {(⟨q, a, d⟩, ⋆, ε, q′, ⋆ ⋆n)

| q ∈ Q, a ∈ Σ, ∃Ã, C̃ ∈ Γ ∗(|Ã| = d and (q, Ã) ⊨a
M (q′, C̃) and |C̃| = n

)
},

where |Ã| is the length of the sequence Ã. In the last rule, n is uniquely deter-
mined for each q and a because M is superdeterministic.

We define two mappings ♮Q :Q′ → ♮(Q′) and ♮Γ : Γ → {⋆} by

♮Q(q) = q

♮Q(⟨q, a⟩) = ⟨q, a⟩
♮Q(⟨q, a,Ai . . . A1⟩) = ⟨q, a, i⟩

♮Γ (A) = ⋆.

The following lemma is easy to show.

Lemma 20. The pair (♮Q, ♮Γ) is a homomorphism from M ′ to ♮(M ′). ⊓⊔

By the combination of Corollary 1 and Lemma 20, we conclude that every
superdeterministic language is accepted by a refinement of a C-machine.

