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This Talk
About refinement intersection type systems that refute 
judgements of other type systems.



Background
Refinement intersection type systems are the basis for

• model checkers for higher-order model checking 
(cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),

• software model-checker for higher-order 
programs (cf. MoCHi [Kobayashi+ 11]).

In those type systems,

• a derivation gives a witness of derivability,
• but nothing witnesses that a given derivation is 

not derivable.



Motivation
A witness of underivability would be useful for

• a compact representation of an error trace

• an efficient model-checker in collaboration with 
the affirmative system

• cf. [Ramsay+ 14] [Godefroid+ 10]

• development of a type system proving safety
• In some cases (e.g. [T&Kobayashi 14]), a type system 

proving failure is easier to be developed.



Contribution
Development of type systems refuting derivability in 
some type systems such as

• a basic type system for the 𝜆𝜆-calculus
• a type system for call-by-value reachability

Theoretical study of the development
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• the call-by-name 𝜆𝜆→-calculus
• Target language
• Affirmative System
• Negative System

• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions



CbN 𝜆𝜆→-calculus
A simply typed calculus equipped with 𝛽𝛽𝛽𝛽-equivalence.

Kinds (i.e. simple types): 

Terms:
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Typing rules:



CbN 𝜆𝜆→-calculus
A simply typed calculus equipped with 𝛽𝛽𝛽𝛽-equivalence.

Equational theory:
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Affirmative system for CbN 𝜆𝜆→

The type system for higher-order model checking 
(without the rule for recursion).

Types are parameterised by kinds and ground type sets:

We use the following syntax for types:



Sets of Types via Refinement Relation
Let A be a kind.
The set Ty𝑄𝑄(𝐴𝐴) of types that refines A is given by

where is the refinement relation:



Subtyping
The subtyping relation is defined by induction on kinds.



Type Environments
A (finite) map from variables to sets of types

(or intersection types).



Typing rules



Fact: Invariance under 𝛽𝛽𝛽𝛽-equivalence
Suppose that 𝑀𝑀 =𝛽𝛽𝛽𝛽 𝑁𝑁.  Then

• This fact will not be used in the sequel.



Convention: Subtyping closure
In what follows, sets of types are assumed to be closed 
under the subtyping relation.

Now posets of types are simply defined by:

where

(cf. 𝑋𝑋 ⊆ 𝑌𝑌 implies ⋀𝑋𝑋 ≽ ⋀𝑌𝑌)



Convention: Subtyping closure
In what follows, sets of types are assumed to be closed 
under the subtyping relation.

The rule for variables becomes simpler.
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Negative Type System
Negative types are those constructed from the negative 
ground types :

Typing rules are the same as the affirmative system.



Negation of a type
We define the two anti-monotone bijections on types

as follows:



Negation



Natural



Natural



Natural

… …



Negation of a type
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Negation of a type
We define the two anti-monotone bijections on types

as follows:



Main Theorem
Theorem

• if and only if                        ,
where 

• Let                                      .  Then

Proof) By mutual induction on the structure of the term.



Main Theorem
Theorem

• if and only if                        ,
where 

• Let                                      .  Then

Proof) By mutual induction on the structure of the term.under a certain condition
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𝜆𝜆→ + Recursion
Term:

Equational theory:



Recursion Rule in Affirmative System
The rule for recursion is given by:

This is a co-inductive rule: a derivation can be infinite.



Recursion Rule in Negative System
The rule for recursion is given by:

This is a inductive rule: a derivation must be finite.



Main Theorem
Lemma

Theorem

• if and only if                        .

• Let                                      .  Then
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Target Language
Kinds (or simple types):

Terms:



Value judgements (Δ ⊢ 𝑀𝑀:𝐴𝐴):

Computation judgements (Δ ⊢ 𝑀𝑀:𝑇𝑇𝐴𝐴):

Simple Type System



Reduction Semantics
Base cases:

Evaluation context:



Affirmative System
Types (formally defined by induction on types):

Refinement relation:



Let

Then 𝜏𝜏 ∷ 𝑜𝑜 → 𝑇𝑇𝑜𝑜 → 𝑇𝑇𝑜𝑜.

Examples of derivable/underivable judgements

Example of a type



Typing Rules
Value judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝐴𝐴):

Computation judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝑇𝑇𝐴𝐴):



Soundness and Completeness
Theorem

(where 𝑀𝑀 ≔ { 𝑣𝑣 ∣ 𝑀𝑀 →∗ 𝑣𝑣 })

In particular,



Negative System
Types (formally defined by induction on types):

Refinement relation:



Typing Rules
Value judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝐴𝐴):

Computation judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝑇𝑇𝐴𝐴):



Typing rules (cont.)
Rules for conditional branch:



Typing rules
Rule for let-expression:



Soundness and Completeness
Theorem

(where 𝑀𝑀 ≔ { 𝑣𝑣 ∣ 𝑀𝑀 →∗ 𝑣𝑣 })

In particular,



Negation of a type
Given a kind 𝐴𝐴, let

We define two operations:



Definition of the Negation



Examples



Examples



Let

Then

Examples



Main Theorem
Theorem

• if and only if                        .

• Let                                      .  Then



Some (Possible) Extensions
1. CbV calculus with integers

• Straightforward.
• One needs infinite intersection and union.

2. CbV calculus with recursion

• I believe that it is straightforward, though I have 
not yet checked.
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How to Develop the Negative Systems
1. The CbN system has a categorical description.

2. The negation induces an automorphism.

3. A CbV system is given by a monad on ScottL𝑢𝑢.

4. The negative system is given by the monad



Category ScottL𝑢𝑢
Definition The category ScottL is given by:

Object Poset (𝐴𝐴,≤𝐴𝐴).

Morphism An upward-closed relation

Composition Let .  Then



Interpretation of CbN 𝜆𝜆→in ScottL𝑢𝑢
Fact ScottL𝑢𝑢 is a cartesian closed category.

Interpretation of kinds is given by:

Hence                             .

Fact



Negation Functor on ScottL𝑢𝑢
The functor 𝜑𝜑: ScottL𝑢𝑢 → ScottL𝑢𝑢 is defined by:

Lemma 𝜑𝜑 is an isomorphism on ScottL𝑢𝑢.

If R ∈ 𝑢𝑢 𝐴𝐴 𝑜𝑜𝑜𝑜 × 𝐵𝐵 and 𝐴𝐴 = ∅, then

which is essentially the complement of 𝑅𝑅.



Monad and Call-by-Value
A monad on a category 𝐶𝐶 is a functor 𝐶𝐶 → 𝐶𝐶 with some 
additional structures.

A (strong) monad on a CCC gives rise to a model of a 
call-by-value calculus [Moggi 91].

A monad on ScottL𝑢𝑢 can be seen as a refinement type 
system for a call-by-value calculus.



Negated Monad and Negative System
Let 𝑇𝑇: ScottL𝑢𝑢 → ScottL𝑢𝑢 be a strong monad.  Then

has the canonical monad structure.  Furthermore the 
respective Kliesli categories are isomorphic

and the refinement type system corresponding to the 
right-hand-side is the negation of the left-hand-side.



Example
The previous type system for CbV calculus is given by 
the following monad.
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Automata complementation
Corresponds to negation of a 2nd-order judgement.



Boolean Closedness of Types
Let 𝐴𝐴 be a kind and 𝐵𝐵𝐴𝐴 be the set of all Böhm trees of 
type 𝐴𝐴.  A language is a subset of 𝐵𝐵𝐴𝐴.

Definition A language 𝐿𝐿 ⊆ 𝐵𝐵𝐴𝐴 is type-definable if 
there exists a type 𝜏𝜏 such that

in the type system for higher-order model checking 
[Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are 
closed under Boolean operations on sets.



Further Applications
The technique presented in this talk is applicable to:

• the type system for the full higher-order model-
checking [Kobayashi&Ong 09]

• a type system witnessing call-by-value 
reachability [T&Kobayashi 14]

• a dependent intersection type system in 
[Kobayashi+ 11], via the translation of dependent 
types to intersection and union types



Consistency and Inconsistency
The negation of a "small" type can be very large.  So 
the negation may not be efficiently computable.

The notion of consistency and inconsistency may be 
useful in the practical use:

Definition Let                        and                       .  They 
are consistent if                and inconsistent otherwise.

Proposition If 𝜏𝜏 and �𝜎𝜎 are inconsistent, then



Inductive Definition of Consistency

Inductive definition of inconsistency is now trivial.



Related Work
"Krivine machines and higher-order schemes" 
[Salvati&Walkiewicz 12]

• The notion of consistency and inconsistency can 
be found in their work (called complementarity
for the former and the latter has no name).

• This talk is partially inspired by their work.



Conclusion
Negation is a definable operation in the refinement 
intersection type system for the call-by-name 𝜆𝜆→.

This observation leads to the construction of negative 
type systems for other refinement type systems, e.g.,

• call-by-name 𝜆𝜆→ + recursion
• the type system for HOMC
• a type system for a call-by-value language

Application to verification needs some work.
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