
Negations
in Refinement Type Systems

T. Tsukada (U. Tokyo)

18th Nov, 2015
Oxford, UK

This Talk
About refinement intersection type systems that refute
judgements of other type systems.

Background
Refinement intersection type systems are the basis for

• model checkers for higher-order model checking
(cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),

• software model-checker for higher-order
programs (cf. MoCHi [Kobayashi+ 11]).

In those type systems,

• a derivation gives a witness of derivability,
• but nothing witnesses that a given derivation is

not derivable.

Motivation
A witness of underivability would be useful for

• a compact representation of an error trace

• an efficient model-checker in collaboration with
the affirmative system

• cf. [Ramsay+ 14] [Godefroid+ 10]

• development of a type system proving safety
• In some cases (e.g. [T&Kobayashi 14]), a type system

proving failure is easier to be developed.

Contribution
Development of type systems refuting derivability in
some type systems such as

• a basic type system for the 𝜆𝜆-calculus
• a type system for call-by-value reachability

Theoretical study of the development

Outline
• Negations in type systems for

• the call-by-name 𝜆𝜆→-calculus
• Target language
• Affirmative System
• Negative System

• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions

CbN 𝜆𝜆→-calculus
A simply typed calculus equipped with 𝛽𝛽𝛽𝛽-equivalence.

Kinds (i.e. simple types):

Terms:

CbN 𝜆𝜆→-calculus
A simply typed calculus equipped with 𝛽𝛽𝛽𝛽-equivalence.

Typing rules:

CbN 𝜆𝜆→-calculus
A simply typed calculus equipped with 𝛽𝛽𝛽𝛽-equivalence.

Equational theory:

Outline
• Negations in type systems for

• the call-by-name 𝜆𝜆→-calculus
• Target language
• Affirmative System
• Negative System

• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions

Affirmative system for CbN 𝜆𝜆→

The type system for higher-order model checking
(without the rule for recursion).

Types are parameterised by kinds and ground type sets:

We use the following syntax for types:

Sets of Types via Refinement Relation
Let A be a kind.
The set Ty𝑄𝑄(𝐴𝐴) of types that refines A is given by

where is the refinement relation:

Subtyping
The subtyping relation is defined by induction on kinds.

Type Environments
A (finite) map from variables to sets of types

(or intersection types).

Typing rules

Fact: Invariance under 𝛽𝛽𝛽𝛽-equivalence
Suppose that 𝑀𝑀 =𝛽𝛽𝛽𝛽 𝑁𝑁. Then

• This fact will not be used in the sequel.

Convention: Subtyping closure
In what follows, sets of types are assumed to be closed
under the subtyping relation.

Now posets of types are simply defined by:

where

(cf. 𝑋𝑋 ⊆ 𝑌𝑌 implies ⋀𝑋𝑋 ≽ ⋀𝑌𝑌)

Convention: Subtyping closure
In what follows, sets of types are assumed to be closed
under the subtyping relation.

The rule for variables becomes simpler.

Outline
• Negations in type systems for

• the call-by-name 𝜆𝜆→-calculus
• Target language
• Affirmative System
• Negative System

• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions

Negative Type System
Negative types are those constructed from the negative
ground types :

Typing rules are the same as the affirmative system.

Negation of a type
We define the two anti-monotone bijections on types

as follows:

Negation

Natural

Natural

Natural

… …

Negation of a type
We define the two anti-monotone bijections on types

as follows:

Negation of a type
We define the two anti-monotone bijections on types

as follows:

Main Theorem
Theorem

• if and only if ,
where

• Let . Then

Proof) By mutual induction on the structure of the term.

Main Theorem
Theorem

• if and only if ,
where

• Let . Then

Proof) By mutual induction on the structure of the term.under a certain condition

Outline
• Negations in type systems for

• the call-by-name 𝜆𝜆→-calculus
• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions

𝜆𝜆→ + Recursion
Term:

Equational theory:

Recursion Rule in Affirmative System
The rule for recursion is given by:

This is a co-inductive rule: a derivation can be infinite.

Recursion Rule in Negative System
The rule for recursion is given by:

This is a inductive rule: a derivation must be finite.

Main Theorem
Lemma

Theorem

• if and only if .

• Let . Then

Outline
• Negations in type systems for

• the call-by-name 𝜆𝜆→-calculus
• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions

Target Language
Kinds (or simple types):

Terms:

Value judgements (Δ ⊢ 𝑀𝑀:𝐴𝐴):

Computation judgements (Δ ⊢ 𝑀𝑀:𝑇𝑇𝐴𝐴):

Simple Type System

Reduction Semantics
Base cases:

Evaluation context:

Affirmative System
Types (formally defined by induction on types):

Refinement relation:

Let

Then 𝜏𝜏 ∷ 𝑜𝑜 → 𝑇𝑇𝑜𝑜 → 𝑇𝑇𝑜𝑜.

Examples of derivable/underivable judgements

Example of a type

Typing Rules
Value judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝐴𝐴):

Computation judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝑇𝑇𝐴𝐴):

Soundness and Completeness
Theorem

(where 𝑀𝑀 ≔ { 𝑣𝑣 ∣ 𝑀𝑀 →∗ 𝑣𝑣 })

In particular,

Negative System
Types (formally defined by induction on types):

Refinement relation:

Typing Rules
Value judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝐴𝐴):

Computation judgements (Γ ⊢ 𝑀𝑀: 𝜏𝜏 with 𝜏𝜏 ∷ 𝑇𝑇𝐴𝐴):

Typing rules (cont.)
Rules for conditional branch:

Typing rules
Rule for let-expression:

Soundness and Completeness
Theorem

(where 𝑀𝑀 ≔ { 𝑣𝑣 ∣ 𝑀𝑀 →∗ 𝑣𝑣 })

In particular,

Negation of a type
Given a kind 𝐴𝐴, let

We define two operations:

Definition of the Negation

Examples

Examples

Let

Then

Examples

Main Theorem
Theorem

• if and only if .

• Let . Then

Some (Possible) Extensions
1. CbV calculus with integers

• Straightforward.
• One needs infinite intersection and union.

2. CbV calculus with recursion

• I believe that it is straightforward, though I have
not yet checked.

Outline
• Negations in type systems for

• the call-by-name 𝜆𝜆→-calculus
• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions

How to Develop the Negative Systems
1. The CbN system has a categorical description.

2. The negation induces an automorphism.

3. A CbV system is given by a monad on ScottL𝑢𝑢.

4. The negative system is given by the monad

Category ScottL𝑢𝑢
Definition The category ScottL is given by:

Object Poset (𝐴𝐴,≤𝐴𝐴).

Morphism An upward-closed relation

Composition Let . Then

Interpretation of CbN 𝜆𝜆→in ScottL𝑢𝑢
Fact ScottL𝑢𝑢 is a cartesian closed category.

Interpretation of kinds is given by:

Hence .

Fact

Negation Functor on ScottL𝑢𝑢
The functor 𝜑𝜑: ScottL𝑢𝑢 → ScottL𝑢𝑢 is defined by:

Lemma 𝜑𝜑 is an isomorphism on ScottL𝑢𝑢.

If R ∈ 𝑢𝑢 𝐴𝐴 𝑜𝑜𝑜𝑜 × 𝐵𝐵 and 𝐴𝐴 = ∅, then

which is essentially the complement of 𝑅𝑅.

Monad and Call-by-Value
A monad on a category 𝐶𝐶 is a functor 𝐶𝐶 → 𝐶𝐶 with some
additional structures.

A (strong) monad on a CCC gives rise to a model of a
call-by-value calculus [Moggi 91].

A monad on ScottL𝑢𝑢 can be seen as a refinement type
system for a call-by-value calculus.

Negated Monad and Negative System
Let 𝑇𝑇: ScottL𝑢𝑢 → ScottL𝑢𝑢 be a strong monad. Then

has the canonical monad structure. Furthermore the
respective Kliesli categories are isomorphic

and the refinement type system corresponding to the
right-hand-side is the negation of the left-hand-side.

Example
The previous type system for CbV calculus is given by
the following monad.

Outline
• Negations in type systems for

• the call-by-name 𝜆𝜆→-calculus
• the call-by-name 𝜆𝜆→-calculus + recursion
• a call-by-value language + nondeterminism

• Semantic analysis

• Discussions

Automata complementation
Corresponds to negation of a 2nd-order judgement.

Boolean Closedness of Types
Let 𝐴𝐴 be a kind and 𝐵𝐵𝐴𝐴 be the set of all Böhm trees of
type 𝐴𝐴. A language is a subset of 𝐵𝐵𝐴𝐴.

Definition A language 𝐿𝐿 ⊆ 𝐵𝐵𝐴𝐴 is type-definable if
there exists a type 𝜏𝜏 such that

in the type system for higher-order model checking
[Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are
closed under Boolean operations on sets.

Further Applications
The technique presented in this talk is applicable to:

• the type system for the full higher-order model-
checking [Kobayashi&Ong 09]

• a type system witnessing call-by-value
reachability [T&Kobayashi 14]

• a dependent intersection type system in
[Kobayashi+ 11], via the translation of dependent
types to intersection and union types

Consistency and Inconsistency
The negation of a "small" type can be very large. So
the negation may not be efficiently computable.

The notion of consistency and inconsistency may be
useful in the practical use:

Definition Let and . They
are consistent if and inconsistent otherwise.

Proposition If 𝜏𝜏 and �𝜎𝜎 are inconsistent, then

Inductive Definition of Consistency

Inductive definition of inconsistency is now trivial.

Related Work
"Krivine machines and higher-order schemes"
[Salvati&Walkiewicz 12]

• The notion of consistency and inconsistency can
be found in their work (called complementarity
for the former and the latter has no name).

• This talk is partially inspired by their work.

Conclusion
Negation is a definable operation in the refinement
intersection type system for the call-by-name 𝜆𝜆→.

This observation leads to the construction of negative
type systems for other refinement type systems, e.g.,

• call-by-name 𝜆𝜆→ + recursion
• the type system for HOMC
• a type system for a call-by-value language

Application to verification needs some work.

	Negations�in Refinement Type Systems
	This Talk
	Background
	Motivation
	Contribution
	Outline
	CbN 𝜆 → -calculus
	CbN 𝜆 → -calculus
	CbN 𝜆 → -calculus
	Outline
	Affirmative system for CbN 𝜆 →
	Sets of Types via Refinement Relation
	Subtyping
	Type Environments
	Typing rules
	Fact: Invariance under 𝛽𝜂-equivalence
	Convention: Subtyping closure
	Convention: Subtyping closure
	Outline
	Negative Type System
	Negation of a type
	Negation
	Natural
	Natural
	Natural
	Negation of a type
	Negation of a type
	Main Theorem
	Main Theorem
	Outline
	 𝜆 → + Recursion
	Recursion Rule in Affirmative System
	Recursion Rule in Negative System
	Main Theorem
	Outline
	Target Language
	Simple Type System
	Reduction Semantics
	Affirmative System
	Example of a type
	Typing Rules
	Soundness and Completeness
	Negative System
	Typing Rules
	Typing rules (cont.)
	Typing rules
	Soundness and Completeness
	Negation of a type
	Definition of the Negation
	Examples
	Examples
	Examples
	Main Theorem
	Some (Possible) Extensions
	Outline
	How to Develop the Negative Systems
	Category ScottL 𝑢
	Interpretation of CbN 𝜆 → in ScottL 𝑢
	Negation Functor on ScottL 𝑢
	Monad and Call-by-Value
	Negated Monad and Negative System
	Example
	Outline
	Automata complementation
	Boolean Closedness of Types
	Further Applications
	Consistency and Inconsistency
	Inductive Definition of Consistency
	Related Work
	Conclusion

