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This Talk

About refinement intersection type systems that refute
judgements of other type systems.
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Background

Refinement intersection type systems are the basis for

 model checkers for higher-order model checking
(Cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),

e software model-checker for higher-order
programs (cf. MoCHi [Kobayashi+ 11]).

In those type systems,

e a derivation gives a witness of derivability,
* but nothing withesses that a given derivation is
not derivable.



Motivation

A witness of underivability would be useful for

e a compact representation of an error trace

e an efficient model-checker in collaboration with
the affirmative system
e cf. [Ramsay+ 14] [Godefroid+ 10]

e development of a type system proving safety

 In some cases (e.g. [T&Kobayashi 14]), a type system
proving failure is easier to be developed.



Contribution

Development of type systems refuting derivability in
some type systems such as

e a basic type system for the A-calculus
* atype system for call-by-value reachabillity

Theoretical study of the development
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CbN A7 -calculus

A simply typed calculus equipped with fn-equivalence.
Kinds (i.e. simple types):
A B:=0|A— A

Terms:

M,N =z | x*. M | MM



CbN A7 -calculus

A simply typed calculus equipped with fn-equivalence.

Typing rules:
(x 2 A) € A
AFx: A

Ax:AFM:: B
A+ XXzA. M A— B

A+FM:A— B AFN: A
A+FMN: B




CbN A7 -calculus

A simply typed calculus equipped with fn-equivalence.

Equational theory:
(A\z.M) N = M[N/z]
Ae.Mx =M (if x & tv(M))
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Affirmative system for CoN A~

The type system for higher-order model checking
(without the rule for recursion).

Types are parameterised by kinds and ground type sets:

TLYQ(O) =@
Tyo(A — B) :="P(Tyg(A)) x Tyo(B)

We use the following syntax for types:

T,0 :i=( /\X — T
X, Y € P(Tyg(A))




Sets of Types via Refinement Relation

Let A be a kind.
The set Ty, (A) of types that refines A is given by

TyQ(A) ={7|7:A}
where is the refinement relation:

qg <@ Voe Xo:: A T B
q: o (NX >7):A—> B




Subtyping

The subtyping relation is defined by induction on kinds.

q 2o q

X =Y T B0
(ANX = 7) 248 (ANY — 0)

VoeYdre Xt <40
X Y




Type Environments

A (finite) map from variables to sets of types
(or intersection types).



Typing rules

(x: X)el' r1eX T=X0
I'Fx:0o

''e: XEM:T
XM :ANX —7

F'E-M:ANX —>71 '-N:AX
I'FMN:T

Vre X.T'M: T
'-M:A\NX




Fact: Invariance under fn-equivalence

Suppose that M =5, N. Then

I'-M:7m<1T'FN:T

* This fact will not be used in the sequel.



Convention: Subtyping closure

In what follows, sets of types are assumed to be closed
under the subtyping relation.

TrroeX=17eX

Now posets of types are simply defined by:

TYQ(O) = (Qa :)
TyQ(A — B) = u(TyQ(A))Op X TyQ(B)

where u(P, <) :

({XCPlz>yeX=>zcX}, D)
(cf. X € Y implies AX = AY)



Convention: Subtyping closure

In what follows, sets of types are assumed to be closed
under the subtyping relation.

TrroeX=17eX

The rule for variables becomes simpler.

(x: X)ell 71X
I'Fx:T
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Negative Type System

Negative types are those constructed from the negative
ground types @ :={glqeQ}:

Ty, (A) = Tya(A)

7ou=q] \X -
X,Y € u(Tyg(A))

Typing rules are the same as the affirmative system.



Negation of a type

We define the two anti-monotone bijections on types

as follows:
oG ‘= (¢

a8\ X = 1) = \(1aX) = (=57)

AX ={uaT|T7¢ X}




Negation 74 : TYQ(A) — TLYQ(A)




Natural 04 :u(Tyg(A4)) — u(Tyg(A))
Ty (o) Tyg(o) = Tyg(o)




Natural 04 :u(Tyg(A4)) — u(Tyg(A))
Ty (o) Tyg(o) = Tyg(o)




Natural
Ly




Negation of a type

We define the two anti-monotone bijections on types

as follows:
oG ‘= (¢

a8\ X = 1) = \(1aX) = (=57)

AX ={uaT|T7¢ X}




Negation of a type

W x:/\Xl—x:—nT & J;:/\XJ":B:T S 7¢X
& TefX & $Z/\(EX)|—CEZ—IT

M ﬂ(|/\X/:> 7')/ 1ff:v ; /\XTI— M:E —T
as fi
iff:c:/\(hX)I—Ma::ﬂT
~asB(\X = 1) = \1aX) = (=57)




Main Theorem

Theorem

o 'V M:7 ifandonlyif gI' - M : =7,
where §(zq : X1, ..., 2n : Xp) =21 1 (8X1),..., 2, : (1 X,)

e let X={7|TFM:7} Then
i M : \(5X)

Proof) By mutual induction on the structure of the term.



Main Theorem

Theorem

o 'V M:7 ifandonlyif gI' - M : =7,
where §(zq : X1, ..., 2n : Xp) =21 1 (8X1),..., 2, : (1 X,)

e let X={7|TFM:7} Then
i M : \(5X)
PEM: A\X iff g0-M: A\®EX)

under a certain condition

Pre



Outline

* Negations in type systems for

e the call-by-name A7 -calculus
e the call-by-name A7 -calculus + recursion

* a call-by-value language + nondeterminism

e Semantic analysis

e Discussions



A~ + Recursion

Term:

M,N =gz | Xx* M| MM|YM

Equational theory:
(Ax.M)N = M|N/x|
Ae.Mx =M (if x ¢ tv(M))
YM=MY M)



Recursion Rule in Affirmative System

The rule for recursion is given by:

'-M: ANX—-7 TFYM:AX
'Y M:r

This is a co-inductive rule: a derivation can be infinite.



Recursion Rule in Negative System

The rule for recursion is given by:

F'FM:ANX —>71 F'FYM:AX
'Y M:7

This is a inductive rule: a derivation must be finite.



Main Theorem

Lemma

KXY f:7 < IFAfY f:—-7

Theorem

e ¥ M:7 ifandonlyif gI' - M : =7

e let X={7|TFM:7} Then
L IE M : A\ (5X)
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Target Language

Kinds (or simple types):
A B:=0|A—>TA
U:=A|TA

Terms:
M:=v|vv|letx=MinM | M®dM
| if v then M else M

vi=t|f|x| .M



Simple Type System

Value judgements (A - M: A):
(x:A)eA wve{t,f} Azxz:AFM:TB
AlFxz: A AFv:o AFM:A—-TB

Computation judgements (A - M: TA):

AFv:i A ArFvi:A—>TB AFuvy:ii A
ArFv::TA AFwvivy i TB

AFM;,:TA(i=1,2) AFM:TA Ax::AFN:TB
AFM & M,:TA AFletx=Min N :: TB
ArFvi:o AFMTA(t=1,2)

At if v then M; else M, :: T A




Reduction Semantics
Base cases:
(Az.M)v — Mlv/x
letz=vin M — Mv/x
if t then M else My — M,
if f then M, else My — M,
M, & My — M,
M, & My — M,

Evaluation context: FE = || |letx=F in M



Affirmative System

Types (formally defined by induction on types).

T,J::zt\f\/\X\T—)T
X,Y € (sets of types)

Refinement relation:
Te{t,f} Vre Xt A
T 0 ANX TA

Voe Xo:: A T 1TB
(NX ->7):A—>TB




Example of a type

Let r
Aft} = ALE)
r= M ME A - A

Thent: (0o - To) = To.

Examples of derivable/underivable judgements

FAf(f @ letx=ftin fy): T
FAf(f & ft):T



Typing Rules

Value judgements (I' - M: 7 with t :: A):
(z: X)el 7e€X C,x: XFM:7

| 'Ft:t THf:f THEFXM: AX >

Computation judgements (I' - M: t with 7 :: TA):
VieXI'kFv:7t Thru:AX—>r7 vy AX

FFv: AX CEovivg:T
Be{l,2}THM,:1 'EM:A\X Cx: XFN:7T
I'EM &My, : T I'Fletx =M in N : 71
I'Fov:t I'EM;:T I'Fov:f I'EMs:T

['Fif vthen My else My : 7 I'Fif v then M else M, : T



Soundness and Completeness
Theorem
-MANX e Fve (M) Fu: \NX

(where (M) :=={v M ->"v})

In particular,
FM:t & M—"t

~M:f & M —*f



Negative System

Types (formally defined by induction on types).
7_',5:::1_:\]_?|/\X\7_‘—>7"\\/X
X,Y € (sets of types)

Refinement relation:
Te{t,f} VTeX. T A
T 0 \/X::TA
Vee X.a:: A TTB
(NX =-7):A—TB




Typing Rules

Value judgements (I' - M: 7 with t :: A):

(z:X)el 7eX C,z:XIFM:7
ClFz:7 TFt:f TIFf:t TIFX M ANX > 7
Computation judgements (I' - M: t with 7 :: TA):
Vie XTIFov:7 FeXTIFv:7T
TIFv: AX FiFv: VX

Vie {1,2}TIFM,;:7T
f“‘Ml@MQI’T'

].:1”_’1)12/\)2—)7_' F"‘Uzi/\X
Cl-wvive: 7



Typing rules (cont.)

Rules for conditional branch:

ClFov:f CI-M,:7
[ IFif v then My else My : 7

ClFov:t CI-M,: 7
[ IFif v then My else My : 7

ClFv:t AT
[ IFif v then My else My : 7

].;H_M127_' FlI_MQ']_-
[ IFif v then My else My : 7




Typing rules

Rule for let-expression:

viel. TIFM:\/ 7,

JEJ;
_dist. law _
AV 7 ==\ N\ o
iel jeJ; keK leLy

Vk € K. F,$I{5k,l|l€Lk}”_Nl’7
F'lFletx=Min N : 7




Soundness and Completeness

Theorem

- M \/X & Ywe (M. IFu: \/X

(where (M) :=={v M ->"v})

In particular,

FM:t & MA"t

FM:f & MATS



Negation of a type

Given a kind 4, let
Ty(A):={7|7: A}
Ty(A) ={7|7:U}

We define two operations:

—a: Tyg(A) — Tyo(A)
14 s u(Tyg(A)) — u(Tyg(A))




Definition of the Negation

—oU =T (vedt,f}
~asre(\ X = 7)== N\(1aX) = (—1r57)
—ra(\X) = \/{-a7 | 7€ X}

1aX =1 7aT [T ¢ X}




Examples

-
~

t
—f = f
(A (D =EAF
(At} = N\{£}
(A{£}H = \{t}

)
) =
) =
(A1) =N\

~(A\{}
~(/\{t}
~(A\{£}
~(/\{t.£}

\V{t}
=\/{f}
\V{t.£}



Examples

(ALt} = At} = s(ALe}) = (At}
= \{f} = \/{®)

(A= AlH=A{E1} = V{}
(At £} = Alet) = A} = V{t £}



Examples

e e} = A{£}
r= M ME A - A

RNE R
ty — Vit _
=N A v (Y
ALY = Ve 5}

FAf(E @& ft):7
FAf(f @ ft):-T



Main Theorem

Theorem

e 'V M :7 ifandonlyif gI'lF M : =7

e let X={7|T'Fov:7} . Then

L IF v A\ (8X)




Some (Possible) Extensions

1. CbV calculus with integers

e Straightforward.

e One needs infinite intersection and union.
2. CbV calculus with recursion

* Ibelieve that it is straightforward, though I have
not yet checked.
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How to Develop the Negative Systems
1. The CbN system has a categorical description.

'-M:7 < (I',7) €[ M]scottrL,

2. The negation induces an automorphism.
@ : ScottL, =, ScottL,,
3. A CbV system is given by a monad on ScottL,,.

4. The negative system is given by the monad

—1
ScottL, =~ ScottL, AN ScottL, — ScottL,



Category ScottL,,

Definition The category ScottL is given by:

Object Poset (4, <,).
Morphism An upward-closed relation
R Cu(A)” x B
R Cu(A)? x B
Composition  Let Then
| SCu(B)? xC

Y € u(B).(Vb cY.(X,b) € Rand (Y,c) € S)
(X,c) € (SoR)




Interpretation of CbN A7in ScottL,,

Fact ScottL,, is a cartesian closed category.

Interpretation of kinds is given by:

[[O:Q -= (Qa :)
[A = Bl == u([A]o)” x [Ble

Hence [Alg = Tyg(A).

Fact T'FM:7 < ((I',7)e|[M]



Negation Functor on ScottL,,

The functor ¢: ScottL,, — ScottL,, is defined by:
p(A) ;= AP
p(R) :={(A\X,b) e u(A)” x B | (X,b) ¢ R}

Lemma @ IS an iIsomorphism on ScottL,,.

If Reu(4)°? x B and A = @, then

o(R) ={(0,b) | (0,b) ¢ R}

which is essentially the complement of R.



Monad and Call-by-Value

A monad on a category C is a functor € = C with some
additional structures.

A (strong) monad on a CCC gives rise to a model of a
call-by-value calculus Moggi 911.

A monad on ScottL, can be seen as a refinement type
system for a call-by-value calculus.



Negated Monad and Negative System

Let T: ScottL,, — ScottL, be a strong monad. Then

—1
ScottL, =~ ScottL, RN ScottL, — ScottL,

has the canonical monad structure. Furthermore the
respective Kliesli categories are isomorphic

(SCOttLu)T = (SCOttLu)gngo_l

and the refinement type system corresponding to the
right-hand-side is the negation of the left-hand-side.



Example

The previous type system for CbV calculus is given by
the following monad.

T(A) :
T(R) :

u(A)
1(EY) € u(u(A))” x u(B)
| dX e=vVbeY.(X,0) e R}
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Automata complementation

Corresponds to negation of a 2nd-order judgement.



Boolean Closedness of Types

Let A be a kind and B, be the set of all B6hm trees of
type A. A language is a subset of B,.

Definition A language L € B, is type-definable if
there exists a type t such that

L={MeBy| -M:7}

In the type system for higher-order model checking
[Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are
closed under Boolean operations on sets.




Further Applications

The technique presented in this talk is applicable to:

» the type system for the full higher-order model-
checking [Kobayashi&0Ong 09]

* atype system witnessing call-by-value
reachability [T&Kobayashi 14]

e a dependent intersection type system In
[Kobayashi+ 11], via the translation of dependent
types to intersection and union types



Consistency and Inconsistency

The negation of a "small" type can be very large. So
the negation may not be efficiently computable.

The notion of consistency and inconsistency may be
useful in the practical use:

Definition Let 7 € Tyg(A4) and 0 € Tyg(A). They
are consistent if 77 = ¢ and inconsistent otherwise.

Proposition If 7 and & are inconsistent, then

FM:0 — FM:T




Inductive Definition of Consistency

qF#p
q <P

Vre XV eY. 7,46
/\X <lia /\?

1 <Wa01 = To<B 09
(7‘1 — 7'2) <lAB (5’1 — 5‘2)

Inductive definition of inconsistency is now trivial.



Related Work

"Krivine machines and higher-order schemes"
[Salvati&Walkiewicz 12]

* The notion of consistency and inconsistency can
be found in their work (called complementarity
for the former and the latter has no name).

* This talk is partially inspired by their work.



Conclusion

Negation is a definable operation in the refinement
intersection type system for the call-by-name 17.

This observation leads to the construction of negative
type systems for other refinement type systems, e.qg.,

e call-by-name A~ + recursion
o the type system for HOMC
e atype system for a call-by-value language

Application to verification needs some work.
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