
Automatically Disproving
Fair Termination of

Higher-Order Functional Programs

Keiichi Watanabe, Ryosuke Sato
Takeshi Tsukada, Naoki Kobayashi

The University of Tokyo

September 20th, 2016

ICFP 2016 at Nara 1

Our Goal

Automated method for disproving fair-termination
of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]

2

Verification of 𝝎-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

includes LTL properties

Outline

• Termination & Fair-Termination

• Importance of Fair-Termination

•Our Method

• Implementation and Experiments

•Related Work

•Conclusion

3

Outline

• Termination & Fair-Termination

• Importance of Fair-Termination

•Our Method

• Implementation and Experiments

•Related Work

•Conclusion

4

Plain Termination
5

Program 𝑃 is terminating
⇔ Every execution eventually terminates

Terminating

main main

Not Terminating

Fair-Termination
6

Fair-Terminating Not Fair-Terminating

An example of fairness in this talk:

If A occurs infinitely often, so does B

Program 𝑃 is fair-terminating
⇔ Every fair execution eventually terminates

Outline

• Termination & Fair-Termination

• Importance of Fair-Termination

•Our Method

• Implementation and Experiments

•Related Work

•Conclusion

7

Terminating, assuming
randomness of *int

8

let rand_int () = *int

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

Termination assuming Randomness

Terminating, assuming
randomness of *int

9

Q.
How to incorporate
randomness with
termination verification?

let rand_int () = *int

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

Termination assuming Randomness

10

let rand_int () =
let r = *int in
if 0 < r then

(event B; r)
else

(event A; r)

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

Insert event expressions

Termination assuming Randomness

11

let rand_int () =
let r = *int in
if 0 < r then

(event B; r)
else

(event A; r)

let rec rand_pos () =
let x = rand_int () in
if 0 < x then

x
else

rand_pos ()

let main = rand_pos ()

If *int never returns a positive integer,
execution is unfair

A → A → A → A →…

Termination assuming Randomness

Termination assuming
randomness
→ Fair-termination

Our Goal (Again)

Automated method for disproving fair-termination
of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]

12

Verification of 𝝎-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

includes LTL properties

Our Goal (Again)

Automated method for disproving fair-termination
of higher-order functional programs

13

Verification of 𝝎-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

includes LTL properties

Proving the existence of fair infinite executions

Outline

• Termination & Fair-Termination

• Importance of Fair-Termination

•Our Method
• Overview of Method
• Step 1, Step 2, Step 3
• Properties of Our Method

• Implementation and Experiments

•Related Work

•Conclusion

14

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

15

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite executions exist!

An extension of a method for
disproving plain termination
[Kuwahara+ CAV15]

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

16

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite
paths exist

Computation Tree

Fair infinite executions exist!

Fair infinite executions exist!

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

17

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Abstracted Tree

Accepted by
the automaton

Fair infinite
paths exist

Computation Tree

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

18

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Fair infinite executions exist!

Counterexample

Abstracted Tree

Accepted by
the automaton

Fair infinite
paths exist

Sufficient condition

Computation Tree

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

19

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite executions exist!

Abstracted Tree

Decide whether
the automaton
accepts the
abstracted tree

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

20

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite executions exist!

Refine abstraction by
using counterexamples

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

21

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite executions exist!

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

22

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Fair infinite executions exist!

Counterexample

Abstracted Tree

Accepted by
the automaton

Fair infinite
paths exist

Sufficient condition

Computation Tree

23
Two Branching Nodes in Abstracted Trees

[Kuwahara+ CAV15]

• Represents inherent non-determinism in programs

• e.g. random integer, inputs

• We should check if there exists a fair infinite branch

• Represents non-determinism introduced by abstraction

• We should check if every branch is fair and infinite

∃-node

∀-node

Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚

24

*

if

A

if

A

if

B

if

B

・・・ ・・・

0<y

x=0

∀∀

∃

B A B

¬(x=0)

0<y¬(0<y)

[Kuwahara+ CAV15]
Two Branching Nodes in Abstracted Trees

Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚

25

*

if

A

if

A

if

B

if

B

・・・ ・・・

x=0

merged
∃

¬(x=0)

0<y

x=0

∀∀

B A B
0<y¬(0<y)

Inherent Non-Determinism∃-node:

x=1

x=-1

x=-2

Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚

26

*

if

A

if

A

if

B

if

B

・・・ ・・・

x=0 ∃
¬(x=0)

0<y

x=0

∀∀

B A B
0<y¬(0<y)

Inherent Non-Determinism∃-node:

x=1

x=-1

x=-2

Check if either branch is
fair and infinite

Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚

27

*

if

A

if

A

if

B

if

B

・・・

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀

∃

B

∀
・・・

Non-Determinism
introduced by Abstraction∀-node:

thenelse
thenelse

A B

Tree(𝐷)

let f x =
let y = x+1 in
if 0 < y then
event B; g y

else
event A; g y

in f *int

𝑃
let f bx=0 =
if bx=0 then
∀(B(g true))
else
∀(B(g true), A(g false))

in ∃(f true, f false)

𝐷

Computation tree of 𝑃

Abstract by 𝒙 = 𝟎, 𝟎 < 𝒚

28

*

if

A

if

A

if

B

if

B

・・・

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀

∃

B

∀
・・・

thenelse
thenelse

A B

Non-Determinism
introduced by Abstraction∀-node:

Check if both branches are
fair and infinite

Parity Tree Automaton 𝐴𝐶

Tree(𝐷) is accepted by 𝐴𝐶 if

• ∃-node
Some branches have fair infinite paths

• ∀-node
All branches have fair infinite paths

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀∀

∃

B A B

29

If Tree(𝐷) is accepted by 𝐴𝐶,
𝑃 is NOT fair-terminating

Parity Tree Automaton 𝐴𝐶

Tree(𝐷) is accepted by 𝐴𝐶 if

• ∃-node
Some branches have fair infinite paths

• ∀-node
All branches have fair infinite paths

¬(x=0)

0<y¬(0<y)
0<y

x=0

∀∀

∃

B A B

30

If Tree(𝐷) is accepted by 𝐴𝐶,
𝑃 is NOT fair-terminating

Needed to express fairness

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

31

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite executions exist!

Abstracted Tree

Decide whether
the automaton
accepts the
abstracted tree

Input:
• Tree generating Boolean Program 𝐷
• Parity tree automaton 𝐴𝐶

Output of
Step 1

32

Step 2

Output:
Whether 𝐴𝐶 accepts 𝐓𝐫𝐞𝐞 𝐷
If 𝐴𝑐 rejects the tree,

counterexample will be returned

Input:
• Tree generating Boolean Program 𝐷
• Parity tree automaton 𝐴𝐶

Output of
Step 1

33

Step 2

Output:
Whether 𝐴𝐶 accepts 𝐓𝐫𝐞𝐞 𝐷
If 𝐴𝑐 rejects the tree,

counterexample will be returned

Higher-order
model checking
[Ong LICS06]

Counterexample Tree

Subtree that is NOT accepted by 𝐴𝐶

Abstracted computation tree Counterexample tree

34

∀End

∃

A

A

A

∃

∀End

∃

A

A

A

Counterexample Representation
35

Challenge:
How to represent an infinite counterexample tree?

Counterexample Representation

cf. Type based effective selection
[Carayol&Serre LICS12] [Tsukada&Ong LICS14]

main = ∃ (End, ∀ f)
f = ∀(𝐴 f)

36

Solution:
Use a finite program that
generates a counterexample tree

generates

Challenge:
How to represent an infinite counterexample tree?

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

37

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite executions exist!

Refine abstraction by
using counterexamples

38

Discover predicates from counterexample paths

Abstraction Refinement

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11]
[Kuwahara+ CAV15]

if

() (AB)𝜔

Computation tree always true

39

Discover predicates from counterexample paths

Abstraction Refinement

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11]
[Kuwahara+ CAV15]

if

() (AB)𝜔

Coarse abstraction

Abstracted tree

∀

End(AB)𝜔

Computation tree

Spurious

40

Discover predicates from counterexample paths

Abstraction Refinement

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11]
[Kuwahara+ CAV15]

if

() (AB)𝜔

Coarse abstraction

Abstracted tree

∀

End(AB)𝜔

Computation tree

Discover new predicates
by analyzing counterexample paths

41

Discover predicates from counterexample paths

Abstraction Refinement

Example: if flag then fair_loop() else ()

[Kobayashi+ PLDI11]
[Kuwahara+ CAV15]

if

() (AB)𝜔

Coarse abstraction

Abstracted tree

∀

End(AB)𝜔

Abstraction with
discovered predicates

Computation tree

(AB)𝜔

∀

42

Challenge:
Previous techniques are limited to
finite counterexample paths

Predicates Discovery from Infinite Paths

Infinite
counterexample path∀

A𝝎(AB)𝜔

Solution:
Use finite prefixes of counterexample paths

43

Finite
length

Challenge:
Previous techniques are limited to
finite counterexample paths

∀

A𝜔(AB)𝜔

Predicates Discovery from Infinite Paths

Overview of Method

Step 2： Higher-Order

Model Checking
accept

Fairness
Constraint

Functional
Program

Step 1: Reduction to
Higher-Order

Model Checking

44

Tree Generating
Program

Tree
Automaton

reject

Predicates
Step 3:

Predicate
Discovery

Counterexample

Fair infinite executions exist!

Our Method is …

• Sound

• Incomplete

•Not terminating, when 𝑃 is fair-terminating
→ Run a fair-termination verifier at the same time

45

[Murase+ POPL16]

Outline

• Termination & Fair-Termination

• Importance of Fair-Termination

•Our Method

• Implementation and Experiments

•Related Work

•Conclusion

46

Implementation

• An extension of MoCHi [Kobayashi+ PLDI11]

• Backend
• Higher-order model checker:

HorSatP [Fujima 15]

＋

Counterexample generation
• SMT solver:

Z3 [de Moura & Bjørner TACAS08]

47

Experiments

Two Benchmarks
1. Small, original benchmark programs
2. Variants of the benchmark programs in

[Koskinen&Terauchi LICS14] and [Murase+ POPL16]

All programs are NOT fair-terminating

48

49

• Spec: Xeon E5-2680 v3 (2.50GHz, 16GB of memory)
• Time Limit: 300 seconds

Program Order Cycles Time[sec]
murase-repeat 2 2 0.98
murase-closure 2 2 0.8

koskinen-1 2 3 2.96
koskinen-2 1 5 9.5

koskinen-3-1 1 4 4.94
koskinen-3-2 1 ≧2 timeout

koskinen-3-2
(predicates given by hand)

1 1 0.87

koskinen-3-3 1 4 5.63

(Excerpt)

Experiment Results

Outline

• Termination & Fair-Termination

• Importance of Fair-Termination

•Our Method

• Implementation and Experiments

•Related Work

•Conclusion

50

Related Work

• Proving fair CTL and CTL* properties
[Cook+ TACAS15] [Cook+ CAV15]

• Disproving fair-termination of
multi-threaded programs [Atig+ CAV12]

51

Automated verification for higher-order programs

• Proving fair-termination [Murase+ POPL16]

• Disproving plain termination [Kuwahara+ CAV15]

Temporal verification for first-order programs

Conclusion

Future work
• Tighter integration with fair-termination verification

• Scalability

• General temporal property verification

• Reduction to parity tree automata HO model checking

• Finite representations of infinite counterexample trees

• Predicate discovery from finite counterexample prefixes

52

Automated method for disproving fair-termination
of higher-order functional programs

Program that Our Method Cannot Verify

53

let rec repeat n =
if n = 0 then
()

else
(event A;
repeat (n-1))

let rec f x =
repeat x;
event B;
f (x+1)

let main = f 0

Extra:

In order to prove the existence
of fair infinite path,
we must prove that
event B occurs infinitely often

For this,
we must prove that
repeat eventually terminates
for arbitrary input x

Our method cannot prove
the termination automatically

Program that Our Method Cannot Verify

54

let rec repeat n =
if n = 0 then
()

else
(event A;
repeat (n-1))

let rec f x =
repeat x;
event B;
f (x+1)

let main = f 0

Extra:

In order to prove the existence
of fair infinite path,
we must prove that
event B occurs infinitely often

For this,
we must prove that
repeat eventually terminates
for arbitrary input x

Our method cannot prove
the termination automatically

cf. Termination verification
for higher-order programs
[Giesl+ TOPLAS11]
[Kuwahara+ ESOP14]

