Automatically Disproving
Fair Termination of
Higher-Order Functional Programs

Keiichi Watanabe, Ryosuke Sato
Takeshi Tsukada, Naoki Kobayashi

The University of Tokyo

September 20t", 2016
ICFP 2016 at Nara

Our Goal

Automated method for disproving fair-termination
of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]

[includes LTL properties]

Verification of w-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

Outline

* Termination & Fair-Termination

* Importance of Fair-Termination

* Our Method

* Implementation and Experiments
* Related Work

* Conclusion

Outline

* Termination & Fair-Termination
* Importance of Fair-Termination

* Our Method

* Implementation and Experiments
* Related Work

* Conclusion

Plain Termination

Program P is terminating
< Every execution eventually terminates

main main

Terminating Not Terminating

Fair-Termination

Program P is fair-terminating

< Every fair execution eventually terminates
An example of fairness in this talk:
If A occurs infinitely often, so does B

O o

Fair-Terminating Not Fair-Terminating

Outline

* Termination & Fair-Termination

* Importance of Fair-Termination

* Our Method

* Implementation and Experiments
* Related Work

* Conclusion

Termination assuming Randomness

let rand int () = *int

let rec rand pos () =
let x = rand _int () in
if 0 < x then

X
else

rand _pos ()

let main = rand_pos ()

Terminating, assuming
randomness of *int

Termination assuming Randomness

let rand int () = *int . . ,
Terminating, assuming

let rec rand_pos () = randomness of *int
let x = rand _int () in

if 0 < x then
X

else (1.

rand_pos () How to incorporate

let main = rand pos () randomness with
termination verification?

Termination assuming Randomness

let rand int () =
let r = *int 1in
if © < r then
(event B; r)
else
(event A; r)

Insert event expressions

let rec rand pos () =
let x = rand_int () in
if 0 < x then

X
else

rand pos ()

let main = rand _pos ()

11

Termination assuming Randomness

; e N
let rand_int ("I *int never returns a positive integer,
let r = *int

if 0 < r then €xecution is unfair

(event B; A>A>A>A->S...
else /

(event A; r)

let rec rand pos () =

let x = rand_int () in
if 0 < x then . _ .

X Termination assuming
else randomness

rand pos ()

— Fair-termination
let main = rand _pos ()

12

Our Goal (Again)

Automated method for disproving fair-termination
of higher-order functional programs

cf. Prove Fair-termination [Murase+ POPL16]

[includes LTL properties]

Verification of w-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

13

Our Goal (Again)

Automated method for disproving fai
of hi - '

-termination

Proving the existence of fair infinite executions}

[includes LTL properties]

Verification of w-regular properties
can be reduced to
that of fair-termination [Vardi APAL91]

Outline

* Termination & Fair-Termination
* Importance of Fair-Termination

* Our Method

* Overview of Method
* Step 1, Step 2, Step 3
* Properties of Our Method

* Implementation and Experiments
* Related Work

* Conclusion

14

Overview of Method

Fairness Functional
Constraint Program
v v
Step 1: Reduction to Step 3:
Higher-Order < Predicates - Predicate
Model Checking Discovery
Tree Tree Generating /
AutomatOn Program
! v Counterexample

Step 2 . Higher-Order /

Model Checking rejeCtE\n extension of a method foj
[

accept l, disproving plain termination
Fair infinite executions exist! \[Kuwahara+ CAV15]

Overview of M e'?{omput?ktion Tree \

Fairness Functional m Fair infinite

Constraint Program if ilf ilf ilf paths exist

Step 1: Reduction to
Higher-Order
Model Checking Discovery

Tree Tree Generating /

Automaton Program Counterexamp|e
V v

Step 2 . Higher-Order /

Model Checking reject

accept |
Fair infinite executions exist!

Overview of M e'?{omput?ktion Tree \

Fairness Functional m Fair infinite

Constraint Program if ilf ilf ilf paths exist

Step 1: Reduction to
Higher-Order
Model Checking

Discovery

Tree Tree Generat&bStraCtEd Tree \
Automaton Program 3

| v o FeK\r(’Fe) Accepted by

. v A4
Step 2 : Higher-Order | | i-(ecy)~ocy the automaton
B A B

0<

Model Checking | | |
accept | A
Fair infinite executions\eﬁ.w. /

18

Overview of Meﬁomput?ktlon Tree \
Fairnes.s Functional m Fair infinite
Constraint Program 1If 1If 1|f 1|f oaths exist

A
Step 1: Reduction to |

Higher-Order
Model Checking [Sufficient condition}

Tree Tree Generat&bStraCtEd Tree .
=

Automaton Program

! v X=el/\|ﬁ(x=9) Accepted by

. v A4
Step 2 : Higher-Order | | i-(ecy)~ocy the automaton
B A B

0<

Model Checking | | |
accept | A
Fair infinite executions\emw. /

Fairf Abstracted Tree
3

Cons x=eAﬂ(x=e) Decide whether
the automaton

v \v4
| | | abstracted tree Predicate
M\ i = : Discovery

~

Tree

Automaton Program

Step 2 . Higher-Order
Model Checking

Tree Generating /

Counterexample

reject

Fair infinite executions exist!

19

Overview of Method
Fairness Functional { Refine abstraction by J

Constraint Program | using counterexamples

v v
Step 1: Reduction to Step 3:
Higher-Order < Predicates Predicate
Model Checking Discovery
Tree Tree Generating
Automaton Program
! v Counterexample

Step 2 . Higher-Order /

Model Checking reject

accept |
Fair infinite executions exist!

Overview of Method

Fairness Functional
Constraint Program
v v
Step 1: Reduction to Step 3:
Higher-Order < Predicates - Predicate
Model Checking Discovery
Tree Tree Generating /
AutomatOn Program
! v Counterexample

Step 2 . Higher-Order /

Model Checking reject

accept |
Fair infinite executions exist!

Overview of M e'?{omput?ktion Tree \

Fairness Functional
Constraint Program

Step 1: Reduction to
Higher-Order
Model Checking

Tree Tree Generat
Automaton Program

v \
Step 2 . Higher-Order
Model Checking

accept |
Fair infinite executions

™ X=9|/\|ﬁ(x=e) Accepted by

22

m Fair infinite

| 'l 'l paths exist

[Sufficient condition}

Gbstracted Tree h
3

v \4

| (0<y) ~o<y the automaton
VB A B

! | |

0<

23

Two Branching Nodes in Abstracted Trees

J-node

[Kuwahara+ CAV15]

* Represents inherent non-determinism in programs

* e.g.ranc

e We shoulc

V-node

om integer, inputs

check if there exists a fair infinite branch

* Represents non-determinism introduced by abstraction

e We should

check if every branch is fair and infinite

Two Branching Nodes in Abstracted Trees
[Kuwahara+ CAV15]

let £ x = P Abstractbyx = 0,0 <y D
let y = x+1 in let f bx=o =
if @ < y then if bx=e then
event B; g vy V(B(g true))
else else
event A; gy V(B(g true), A(g false))
in ¥ *int in 3(f true, f false)
Computation tree of P Tree(D)
sk =
AN N
if if if if A4 v
| | | o< I—|(0<y)|/\|@<y
Y8 A B

l
A A B B
|1 ! |

Jd-node: Inherent Non-Determinism

let f x = P Abstractby x = 0,0 <y D
let y = x+1 in let f bx=o =

if @ < y then if bx=e then

event B; g vy V(B(g true))

else else

event A; gy V(B(g true), A(g false))
in £ *int in 3(f true, f falea)

Computation tree of P Tree(D) merged J

=
x=9%§|)—l(x=0)

\ \4

I 2 (8<y)" 01y
Oy B A 3

N

26
Jd-node: Inherent Non-Determinism

let f x = P Abstractby x = 0,0 <y D
let y = x+1 in let f bx=o =

if @ < y then if bx=e then

event B; g vy V(B(g true))

ecle\s,:nt A gy {Check if either branch is}

in f *int fair and infinite
Computation tree of P Tree(D =
X=0 LAA - (x=0)
% v
I —|(0<y)|/\|@<y

Non-Determinism

V-node: introduced by Abstraction
let f x = P | Abstractbyx =0,0<y D
let y = x+1 in let f bx=0 =
if @ < y then if bx=e then
event B; g vy V(B(g true))
else else

event A; gy

in f *

Computation tree of P
%

if if
I
A A
L
v . .

else

if if
| 1
BB

3

V(B(g true), A(g false))
in 3(f true, f false)

Tree(D)
=

X=@r,,/’T§§;%i¢x=e)

v else _V._then
lﬂ(0<yxr”“‘~\@<y

6<y
| lA B

|

then

Y-node:

let f x
let y

P

X+1

if 0 < y then
event B; g vy

else

event A; gy

in £ *

in

Computation tree of P

Non-Determinism 28

introduced by Abstraction

Abstractbyx = 0,0 <y

D
let f bx=0 =
if bx=e then
V(B(g true))
else
V(B(g true), A(g false))

+nrniin £ L£-a1ccna)\

Check if both branches are}

* fair and infinite
AN |/ i
if if if if 9|Se then
else|l! I | 1 |then ocy | l —'(@<Y)/\.@<y
A A B B I lA Bl
1| P : ; !
v: o A : : :

Parity Tree Automaton A,

X=0

o<y

/\\ﬂ(x=e)-

A4

B
|

=

If Tree(D) is accepted by A,

P is NOT fair-terminating

v

Tree(D) is accepted by A, if

3 -node
Some branches have fair infinite paths

—|(9<y)/\@,<y
e V-node

A

B
|

All branches have fair infinite paths

30

Pa{ity Tree Automaton A

{Needed to express fairness}ed by A,

X=0

o<y

/\ﬂ(ﬁe)-

A4

B
|

=

P is NOT fair-terminating

v

Tree(D) is accepted by A, if

3 -node
Some branches have fair infinite paths

—|(@<y)/\@,<y
e V-node

A

B
|

All branches have fair infinite paths

Fairf Abstracted Tree
3

Cons x=eAﬂ(x=e) Decide whether
the automaton

v \v4
| | | abstracted tree Predicate
M\ i = : Discovery

~

Tree

Automaton Program

Step 2 . Higher-Order
Model Checking

Tree Generating /

Counterexample

reject

Fair infinite executions exist!

31

Step 2

Input:
* Tree generating Boolean Program D Output of
* Parity tree automaton A, Step 1

Output:
Whether A, accepts Tree(D)
If A, rejects the tree,

counterexample will be returned

33

Step 2

Input:
* Tree generating Boolean Program D Output of
* Parity tree automaton A, Step 1

. ™
Higher-order
model checking
Ong LICS06
Output: \one | /

Whether A, accepts Tree(D)
If A, rejects the tree,

counterexample will be returned

Counterexample Tree

Subtree that is NOT accepted by A,

Abstracted computation tree Counterexample tree
= =
End /V\, End /v
A 3 A
A '/\' A
A A

Counterexample Representation

Challenge:
How to represent an infinite counterexample tree?

Counterexample Representation

Challenge:

How to represent an infinite counterexample tree?
Solution:

Use a finite program that

generates a counterexample tree 3

R

generates gng

main = 3 (End,V f)
f = V(A)

cf. Type based effective selection
[Carayol&Serre LICS12] [Tsukada&Ong LICS14]

—> =3 —3
N\«

Overview of Method
Fairness Functional { Refine abstraction by J

Constraint Program | using counterexamples

v v
Step 1: Reduction to Step 3:
Higher-Order < Predicates Predicate
Model Checking Discovery
Tree Tree Generating
Automaton Program
! v Counterexample

Step 2 . Higher-Order /

Model Checking reject

accept |
Fair infinite executions exist!

. . [Kobayashi+ PLDI11]
Abstraction Refinement kuwahara+ cavis)

Discover predicates from counterexample paths

Example: | if flagt\hen fair_loop() else ()

Computation tree [always tr'ue]

X

(AB)® ()

. . [Kobayashi+ PLDI11]
Abstraction Refinement kuwahara+ cavis)

Discover predicates from counterexample paths

Example: | if flag then fair loop() else ()

Computation tree Abstracted tree

|
Coarse abstraction Y (Spurious |

ot X
/x (AB)® End

(AB)® ()

40
[Kobayashi+ PLDI11]

Abstraction Refinement [kuwahara+ cavis

Discover predicates from counterexample paths

Example: | if flag then fair loop() else ()

Computation tree Abstracted tree
1

| Coarse abstraction v/
if
. ¢ . \eng
N . Y
‘ Discover new predicates
\by analyzing counterexample paths
/

. . [Kobayashi+ PLDI11]
Abstraction Refinement [kuwahara+ cavis

Discover predicates from counterexample paths

Example: | if flag then fair loop() else ()

Computation tree Abstracted tree

I
Coarse abstraction \v/

I
if /\
\X (AB)® End
; Abstraction with |

(AB)® () discovered predicates V

I
(AB)®

Predicates Discovery from Infinite Paths

Challenge:
Previous techniques are limited to
finite counterexample paths

42

‘ Infinite
vV / counterexample pat

J

(AB)? pAw

43

Predicates Discovery from Infinite Paths

Challenge:
Previous techniques are limited to
finite counterexample paths

Solution:
Use finite prefixes of counterexample paths

‘ Finite
v length

(AB)® A

Overview of Method

Fairness Functional
Constraint Program
v v
Step 1: Reduction to Step 3:
Higher-Order < Predicates - Predicate
Model Checking Discovery
Tree Tree Generating /
AutomatOn Program
! v Counterexample

Step 2 . Higher-Order /

Model Checking reject

accept |
Fair infinite executions exist!

Our Method is ...

* Sound

* Incomplete

* Not terminating, when P is fair-terminating

— Run a fair-termination verifier at the same time
[Murase+ POPL16]

Outline

* Termination & Fair-Termination

* Importance of Fair-Termination

* Our Method

* Implementation and Experiments
* Related Work

* Conclusion

46

Implementation

 An extension of MoCHi [Kobayashi+ PLDI11]

* Backend
* Higher-order model checker:
HorSatP [Fujima 15]
|
Counterexample generation

 SMT solver:
/3 [de Moura & Bjgrner TACAS08]

Experiments

Two Benchmarks

1. Small, original benchmark programs

2. Variants of the benchmark programs in
[Koskinen&Terauchi LICS14] and [Murase+ POPL16]

All programs are NOT fair-terminating

Experiment Results

murase-repeat 0.98
murase-closure 2 2 0.8
koskinen-1 2 3 2.96
koskinen-2 1 5 9.5
Koskinen-3-1 1 4 4.94
koskinen-3-2 1 =2 timeout
Koskinen-3-2
(predicates given by hand) 1 ! Bied
koskinen-3-3 1 4 5.63
(Excerpt)

e Spec: Xeon E5-2680 v3 (2.50GHz, 16GB of memory)
* Time Limit: 300 seconds

49

Outline

* Termination & Fair-Termination

* Importance of Fair-Termination

* Our Method

* Implementation and Experiments
* Related Work

* Conclusion

50

51

Related Work

Automated verification for higher-order programs

* Proving fair-termination [Murase+ POPL16]
* Disproving plain termination [Kuwahara+ CAV15]

Temporal verification for first-order programs

* Proving fair CTL and CTL* properties
[Cook+ TACAS15] [Cook+ CAV15]

* Disproving fair-termination of
multi-threaded programs [Atig+ CAV12]

52

Conclusion

Automated method for disproving fair-termination
of higher-order functional programs

* Reduction to parity tree automata HO model checking
* Finite representations of infinite counterexample trees

* Predicate discovery from finite counterexample prefixes

Future work
* Tighter integration with fair-termination verification

* Scalability
* General temporal property verification

Extra:

Program that Our Method Cannot Verify

let rec repeat n =

. In order to prove the existence
if n = 0 then P

of fair infinite path,

elég we must prove that
. event B occurs infinitely often
(event A;

repeat (n-1)) For this

we must prove that
repeat eventually terminates
for arbitrary input x

let rec ¥ x =
repeat X;
event B;
 (x+1)

Our method cannot prove
the termination automatically

let main = ¥ ©

Extra:

Program that Our Method Cannot Verify

let rec repeat n =

if n = @ then cf. Termination verification
() for higher-order programs
else [Giesl+ TOPLAS11]
(event A; [Kuwahara+ ESOP14]

repeat (n-1)) For this

we must prove that
repeat eventually terminates
for arbitrary input x

let rec ¥ x =
repeat X;
event B;
 (x+1)

LOur method cannot prove J
y

let main = f © the termination automaticall

