
RustHorn:
CHC-based Verification

for Rust Programs
Yusuke Matsushita, Takeshi Tsukada, Naoki Kobayashi  

The University of Tokyo, Japan

ESOP 2020

Verification with CHCs
int mc91(int n) {
 if (n > 100) return n - 10;
 else return mc91(mc91(n + 11));
}
void test(int n) {
 if (n <= 101) assert(mc91(n) == 91);
}

Mc91(n, r) ⟸ n > 100 ∧ r = n − 10
Mc91(n, r) ⟸ n ≤ 100 ∧ Mc91(n + 11, r′) ∧ Mc91(r′ , r)
r = 91 ⟸ n ≤ 101 ∧ Mc91(n, r)

CHC  
satisfiability 

problem

program safety 
problem

: mc91(n) returns r if it terminatesMc91(n, r)

clean first-order logic
→ good for automated verification!

Existing method for
pointers

void mc91p(int n, int* r) {
 if (n > 100) *r = n - 10;
 else { int s; mc91(n + 11, &s); mc91(s, r); }
}
void test(int n) {
 if (n <= 101) { int l; mc91(n, &l); assert(l == 91); }
}

Mc91p(n, r, h, h′) ⟸ n > 100 ∧ h′ = h{r ← n − 10}
Mc91p(n, r, h, h′) ⟸ n ≤ 100 ∧ Mc91p(n + 11,ms, h, h′ ′)

∧ Mc91p(h′ ′ [ms], r, h′ ′ , h′)
h′ [r] = 91 ⟸ n ≤ 101 ∧ Mc91p(n, r, h, h′)

existing method

: the memory state (address ↦ value) before/after the function callh, h′

simply pass around the
global memory state

Pointers are hard
void just_rec(int* ma) {
 if (rand() >= 0) return;
 int old_a = *ma; int b = rand(); just_rec(&b);
 assert (old_a == *ma);
}

important property:
&b is a fresh address

quite trivial?

JustRec(ma, h, sp, h′ , sp′ , r) :⟺ r = 𝗍𝗋𝗎𝖾 ∧ ma ≤ sp ∧ sp ≤ sp′

∧ ∀i ≤ sp . h[i] = h′ [i]

the solver has to find a quantified invariant to verify the safety:
existing method is
not very scalable!

JustRec(ma, h, sp, h′ , sp′ , r) ⟸ h′ = h ∧ sp′ = sp ∧ r = 𝗍𝗋𝗎𝖾
JustRec(ma, h, sp, h′ , sp′ , r) ⟸ mb = sp′ ′ = sp + 1 ∧ h′ ′ = h{mb ← b} ∧

JustRec(mb, h′ ′ , sp′ ′ , h′ , sp′ , r) ∧ r = (h[ma] == h′ [ma])
r = 𝗍𝗋𝗎𝖾 ⟸ JustRec(ma, h, sp, h′ , sp′ , r) ∧ ma ≤ sp

existing method

Our work
• Focus on programs in the Rust language

• pointer usage is managed based on borrows

• Novel translation from Rust programs to CHCs

• clears away pointers and heaps 
pointer ma → pair of values

• applied to automated verification

• Proof of the correctness and  
experimental evaluation of the effectiveness

⟨a, a∘⟩ ?

just_rec revisited
void just_rec(int* ma) {
 if (rand() >= 0) return;
 int old_a = *ma; int b = rand(); just_rec(&b);
 assert (old_a == *ma);
}

JustRec(⟨a, a∘⟩, r) ⟸ a∘ = a ∧ r = 𝗍𝗋𝗎𝖾
JustRec(⟨a, a∘⟩, r) ⟸ mb = ⟨b, b∘⟩ ∧ JustRec(mb, r′)

∧ a∘ = a ∧ r = (a == a∘)
r = 𝗍𝗋𝗎𝖾 ⟸ JustRec(⟨a, a∘⟩, r)

our method

piece of cake 
for solvers!

follows Rust’s
borrow discipline

no representation of the
global memory state!

Outline

• Overview of our method

• Proof of the correctness

• Experiments

What is borrow?

• Borrow: temporary transfer of update permission

• while data is borrowed, the lender cannot even
read it

int a = 5;

{ int* ma = &a; *ma += 3; }

print(a); // 8

borrow update

end of borrow

release ma

the new value is passed
from ma to a

Our method

• pointer ma → pair of values

• : the current value of data

• can be freely updated by pointer ma

• : the new value of data at the end of borrow

• constrained to at the time ma is released
• the original owner must know only

⟨a, a∘⟩
a

a∘
a

a∘

Rust’s mutable reference &mut T

taking information from the future! 
related to prophecy variables [Abadi & Lamport 1991] [Jung+ 2020]

Example: take_max
int* take_max(int* ma, int* mb) {
 if (*ma >= *mb) return ma; else return mb;
}
void test(int a, int b) {
 { int* mc = take_max(&a, &b); *mc += 1; }
 assert (a != b);
}

call test(5,3)
→ borrow a&b to ma&mb; call take_max(ma,mb)
→ release mb; move ma to mc (∵ 5≧3)

→ mc updates the data 5→6; release mc (=ma)

→ borrow of a&b ends; assert a≠b (i.e. 6≠3)

borrow a&b update
end of  
borrow 
of a&b

sample 
execution

a∘ b∘

release mb

release mc
read a&b

Example: take_max
int* take_max(int* ma, int* mb) {
 if (*ma >= *mb) return ma; else return mb;
}
void test(int a, int b) {
 { int* mc = take_max(&a, &b); *mc += 1; }
 assert (a != b);
}

TakeMax(⟨a, a∘⟩, ⟨b, b∘⟩, r) ⟸ a ≥ b ∧ b∘ = b ∧ r = ⟨a, a∘⟩
TakeMax(⟨a, a∘⟩, ⟨b, b∘⟩, r) ⟸ a < b ∧ a∘ = a ∧ r = ⟨b, b∘⟩
Test(a, b, r) ⟸ TakeMax(⟨a, a∘⟩, ⟨b, b∘⟩, ⟨c, c∘⟩) ∧ c′ = c + 1

∧ c∘ = c′ ∧ r = (a∘!= b∘)
r = 𝗍𝗋𝗎𝖾 ⟸ Test(a, b, r)

our method
release mb

release mc

borrow a&b
update

read a&b

• Our method supports:

• recursive data types (e.g. lists and trees)

• recursions and loops

• various borrow patterns (under non-lexical lifetimes), 
including reborrows

What features are
supported?

Outline

• Overview of our method

• Proof of the correctness

• Experiments

Proof of the correctness

• Correctness is proved via operational semantics 
based on prophecy variables ()

• The execution sequence corresponds to 
the resolution sequence on the output CHCs

• Guarantee of Rust’s type system:

a prophecy variable is rightly resolved 
into the value at the end of borrow 
before the original owner accesses it

a∘

Operational semantics
with prophecy variables

int* take_max(int* ma, int* mb) {
 if (*ma >= *mb) return ma; else return mb;
}
void test(int a, int b) {
 { int* mc = take_max(&a, &b); *mc += 1; }
 assert (a != b);
}

call test(,) [a= ,b=]
→ borrow & call take_max [ma= ,mb=][a= ,b=]

→ release mb [ma=][a= ,b=]

→ [mc= ,a= ,b=]

→ update [mc= ,a= ,b=]

→ release mc [a= ,b=]
→ assert ≠

5 3 5 3
⟨5,a∘⟩ ⟨3,b∘⟩ a∘ b∘

⟨5,a∘⟩ a∘ 3
⟨5,a∘⟩ a∘ 3

⟨6,a∘⟩ a∘ 3
6 3

6 3

Outline

• Overview of Our Method

• Proof of the Correctness

• Experiments

Experiments
• Implemented RustHorn, a prototype CHC-based

verifier based on our method

• CHC solver: Spacer [Komuravelli+ 2014] or HoIce [Champion+ 2018]

• Evaluated RustHorn in comparison to SeaHorn

• SeaHorn [Gurfinkel+ 2015]: CHC-based verifier for C 
based on the existing method for pointers

• Benchmarks:

i. SeaHorn’s tests that suit the core of Rust

ii. Ones featuring various pointer usages in Rust

Experimental results

• RustHorn+HoIce: good at recursive data types

• RustHorn is largely comparable to SeaHorn

Related work
• CHC-based verification of programs with pointers

• [Gurfinkel+ 2015] CHC-based verifier for C

• [Kahsai+ 2016] CHC-based verifier for Java

• Verification for Rust

• [Jung+ 2018] Verify Rust libraries with Coq

• [Ullrich 2016] Translate some Rust programs into
functional programs

• [Hahn 2016] [Müller+ 2018] [Erdin 2019] Verify Rust
programs on Viper

Related work

• Verification using ownership/permission

• [Bornat+ 2005] [Müller+ 2016] [Jung+ 2015] Separation
logic with ownership

• [Cohen+ 2009] [Barnett+ 2011] Verification platform
with ownership

• Prophecy variables ― Information of the future

• [Abadi & Lamport 1991] Idea of prophecy variables

• [Jung+ 2020] Separation logic with prophecy variables

Conclusion

• Novel translation from Rust programs to CHCs

• pointer ma → pair of values

• supports recursive data types, reborrows, etc.

• applied to automated verification

• Proof of the correctness and  
experimental evaluation of the effectiveness

⟨a, a∘⟩

