
RustHorn: CHC-based
Verification for Rust Programs

Yusuke Matsushita, Takeshi Tsukada and Naoki Kobayashi
The University of Tokyo, Tokyo, Japan

{yskm24t,tsukada,koba}@is.s.u-tokyo.ac.jp

ESOP2020

Talk for PPL2020

CHCs for Automated Verification
• Reduction to Constrained Horn Clauses (CHCs) is a widely

studied approach to automated verification  
[Grebenshchikov+, 2012] [Bjørner+, 2015]

2

Program &
Verified Property

CHC System & 
Satisfiability

int mc91(int n) {
 if (n > 100) return n - 10;
 else return mc91(mc91(n + 11));
}

“for any n ≦ 101, mc91(n) returns 91 if it terminates”

reduction

Mc91(n, r) ⟸ n > 100 ∧ r = n − 10
Mc91(n, r) ⟸ n ≤ 100 ∧ Mc91(n + 11, r′) ∧ Mc91(r′ , r)
r = 91 ⟸ n ≤ 101 ∧ Mc91(n, r)

input output

“this CHC system is satisfiable”

Mc91(n, r) :⟺ r = 91 ∨ (n > 100 ∧ r = n − 10)
A CHC solver automatically finds out a solution to the CHC system, e.g.:

Background

Difficulties with Pointers
• Existing method: Model the memory as an array [Gurfinkel+, 2015]

• Not very scalable; quantified invariants are involved for

even easy programs

3

Background

reduction by the existing method

Solution: JustRec(ma, h, sp, h′ , sp′ , r) :⟺ r = 𝗍𝗋𝗎𝖾 ∧ ∀i ≤ sp . h[i] = h′ [i]

JustRec(ma, h, sp, h′ , sp′ , r) ⟸ h′ = h ∧ sp′ = sp ∧ r = 𝗍𝗋𝗎𝖾
JustRec(ma, h, sp, h′ , sp′ , r) ⟸ mb = sp′ ′ = sp + 1 ∧ h′ ′ = h{mb ← b} ∧

JustRec(mb, h′ ′ , sp′ ′ , h′ , sp′ , r) ∧ r = (h[ma] == h′ [ma])
r = 𝗍𝗋𝗎𝖾 ⟸ JustRec(ma, h, sp, h′ , sp′ , r) ∧ ma ≤ sp address constraint

memory update

memory read

bool just_rec(int *ma) {
 if (rand() >= 0) return true;
 int old_a = *ma; int b = rand(); just_rec(&b);
 return (old_a == *ma);
}

“just_rec(ma) always returns true if it terminates”

quantified invariant

Pointer-Manipulating 
Program

Our Work

• We propose a novel translation from programs  
to CHCs clearing away pointers and heaps.

• Also, we formalize and prove its correctness 

and confirm the effectiveness by experiments.

4

Focusing on programs whose pointer usages
are managed under ownership in the style of the
Rust programming language,

Table of Contents

• Ownership and Borrow in Rust

• Our Method

• Formalization and Correctness Proof

• Experiments and Evaluation

5

Table of Contents

• Ownership and Borrow in Rust

• Our Method

• Formalization and Correctness Proof

• Experiments and Evaluation

6

Ownership and Borrow in Rust

• The ownership system guarantees that:

• For each memory cell and at each moment, we have

(i) only one alias with the update permission to the cell; or

(ii) some aliases with the read permission to the cell

• “If an alias can read data, any other alias cannot update it”

• Borrow: a temporary transfer of a permission
• This makes Rust really interesting!

• The end of borrow is statically managed by lifetimes

7

Example of Borrow

8

int *take_max(int *ma, int *mb) {
 if (*ma >= *mb) return ma; else return mb;
}
bool inc_max(int a, int b) {
 { int *mc = take_max(&a, &b); // borrow a & b
 *mc += 1; } // end of borrow
 return (a != b);
}

When inc_max(5,3)
is called

*mc+=1Call 
take_max(&a,&b)

ma
a

mc

5 6

borrow
end of borrow

mb
b

3

borrow end of borrow

Return  
from call

Exit {…}

update 
permission

permission 
release

permission 
release

Table of Contents

• Ownership and Borrow in Rust

• Our Method

• Formalization and Correctness Proof

• Experiments and Evaluation

9

10

• Model a pointer ma simply as a pair of values

• the current value & the value at the end of borrow

• Access to the future information is related to prophecy
variables [Abadi & Lamport, 1991] [Jung+, 2020]

⟨a, a∘⟩
a a∘

Our Method

mutable reference (i.e. pointer with a borrowed update permission)

Our Method

11

⟨a, a∘⟩
Our model of pointer ma

How can this work?

Example I: take_max/inc_max

12

int *take_max(int *ma, int *mb) {
 if (*ma >= *mb) return ma; else return mb;
}
bool inc_max(int a, int b) {
 { int *mc = take_max(&a, &b); // borrow a & b
 *mc += 1; } // end of borrow
 return (a != b);
}

“for any a & b, inc_max(a,b) returns true”

borrow
permission release

permission release

Key idea: set when the permission of is releasedx∘ = x mx = ⟨x, x∘⟩

TakeMax(⟨a, a∘⟩, ⟨b, b∘⟩, r) ⟸ a ≥ b ∧ b∘ = b ∧ r = ⟨a, a∘⟩
TakeMax(⟨a, a∘⟩, ⟨b, b∘⟩, r) ⟸ a < b ∧ a∘ = a ∧ r = ⟨b, b∘⟩
IncMax(a, b, r) ⟸ TakeMax(⟨a, a∘⟩, ⟨b, b∘⟩, ⟨c, c∘⟩) ∧ c′ = c + 1 ∧

c∘ = c′ ∧ r = (a∘!= b∘)
r = 𝗍𝗋𝗎𝖾 ⟸ IncMax(a, b, r)

reduction by our method

ma mb

mc

Example II: take_some/inc_some
• Our method works well with recursive data types!

• This makes our method strong and interesting

13

enum List { Cons(i32, Box<List>), Nil } use List::*;

fn take_some(mxs: &mut List) -> &mut i32 {
 match mxs {
 Cons(mx, mxs2) => if rand() { mx } else { take_some(mxs2) }
 Nil => take_some(mxs)
 }
}

fn sum(xs:&List)->i32 { match xs {Cons(x,xs2)=>x+sum(xs2),Nil=>0} }

fn inc_some(mut xs: List) -> bool {
 let n = sum(&xs); let my = take_some(&mut xs);
 *my += 1; sum(&xs) == n + 1
}

take_some(mxs) takes a mutable reference 
to a randomly chosen element of *mxs

inc_some(xs) increments some element of xs  
and checks that the sum has increased by 1

14

fn take_some(mxs: &mut List) -> &mut i32 {
 match mxs {
 Cons(mx, mxs2) => if rand() { mx } else { take_some(mxs2) }
 Nil => take_some(mxs)
 }
}
fn inc_some(mut xs: List) -> bool {
 let n = sum(&xs); let my = take_some(&mut xs);
 *my += 1; sum(&xs) == n + 1
}
“for any xs, inc_some(xs) always returns true if it terminates”

reduction by our method

TakeSome(⟨[x |xs′], xs∘⟩, r) ⟸ xs∘ = [x∘ |xs′ ∘] ∧ xs′ ∘ = xs′ ∧ r = ⟨x, x∘⟩
TakeSome(⟨[x |xs′], xs∘⟩, r) ⟸ xs∘ = [x∘ |xs′ ∘] ∧ x∘ = x ∧ TakeSome(⟨xs′ , xs′ ∘⟩, r)
TakeSome(⟨[], xs∘⟩, r) ⟸ TakeSome(⟨[], xs∘⟩, r)
IncSome(xs, r) ⟸ TakeSome(⟨xs, xs∘⟩, ⟨y, y∘⟩) ∧ y∘ = y + 1 ∧ r = (𝗌𝗎𝗆(xs∘) == 𝗌𝗎𝗆(xs) + 1)
r = 𝗍𝗋𝗎𝖾 ⟸ IncSome(xs, r)

TakeSome(⟨xs, xs∘⟩, ⟨y, y∘⟩) :⟺ y∘ − y = 𝗌𝗎𝗆(xs∘) − 𝗌𝗎𝗆(xs)
IncSome(xs, r) :⟺ r = 𝗍𝗋𝗎𝖾

It has a simple solution:

Example II: take_some/inc_some

Going Beyond CHCs

let take_max (a, a') (b, b') =
 if a >= b then (assume (b' = b); (a, a'))
 else (assume (a' = a); (b, b'))
let inc_max a b =
 let a' = rand () in let b' = rand () in
 let (c, c') = take_max (a, a') (b, b') in
 assume (c' = c + 1); a' <> b'

int *take_max(int *ma, int *mb) {
 if (*ma >= *mb) return ma; else return mb;
}
bool inc_max(int a, int b) {
 { int *mc = take_max(&a, &b); // borrow a & b
 *mc += 1; } // end of borrow
 return (a != b);
}

reduction to a functional program

borrow

permission release

permission release

• Our method can be extended into reduction from a Rust
program to a functional program

• By this view we can apply various verification

techniques to Rust (e.g. model checking, Boogie, Coq)

15

Advanced Features

• Closure
• Permission release on the enclosed data is the twist

• FnMut can be modeled as a closure that generates a newer
version of itself after it is called

• RefCell<T> etc.

• We need to deal with real sharing of data

• Simple remedy: pass around a global array for RefCell values

• At the very time a mutable reference is taken from
a RefCell, the data at the array is updated into

⟨a, a∘⟩
a∘

16

Table of Contents

• Ownership and Borrow in Rust

• Our Method

• Formalization and Correctness Proof

• Experiments and Evaluation

17

Formalization and
Correctness Proof

• Formalized the core of Rust

• Similar to λRust of RustBelt [Jung+, 2018] but ours is simpler; 

permission releases and lifetimes are made explicit

• Proved the correctness of the translation

• By techniques based on bisimulations

• A concept strongly related to prophecy variables is used

18

Formalization and
Correctness Proof

19

Table of Contents

• Ownership and Borrow in Rust

• Our Method

• Formalization and Correctness Proof

• Experiments and Evaluation

20

21

Implementation and
Experiments

• Implemented a prototype verifier RustHorn

• Uses MIR (mid-level intermediate representation) of the Rust compiler

• Generates CHCs with a simple algorithm based on our method

• Conducted experiments on benchmarks

• Tested RustHorn and SeaHorn [Gurfinkel+, 2015]

• SeaHorn is a standard CHC-based verifier for C programs

• Made benchmark verification problems in Rust & C
• Took ones from SeaHorn and also wrote ones featuring pointers

• Used Z3/Spacer [Komuravelli+, 2014] and HoIce [Champion+, 2018] as  
a backend CHC solver

github.com/hopv/rust-horncheck out

https://github.com/hopv/rust-horn

Experimental Results

• RustHorn+HoIce handles recursive data types quite well

• The output of RustHorn is very reliable

• RustHorn is well comparable to SeaHorn in performance
22

Conclusion

• Novel translation from Rust programs to CHCs

• Models a mutable reference as a pair of the current value 
and the future value, reminiscent of a prophecy variable

• Applicable to a wide class of Rust programs

• We formalized and proved its correctness and confirmed
the effectiveness by experiments

We believe that this work establishes the foundation of
verification leveraging borrow-based ownership.

arxiv.org/abs/2002.09002full paper:

https://arxiv.org/abs/2002.09002

